
HD-A138 427 PRINTED CIRCUIT BOARD LAYOUT BY 11ICROCOMPUTER(U) AIR 1/3
FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF
ENGINEERING E N KRUSMARN DEC 83 AFIT/GE/EE/83D-35

UNCLASSIFIED F/G 9/5 NL

hmmmmmmmmEhmhnmmnhhmhmE
EnnnunnnnnnnnE
EhmhmmmmmhmhhE
lillllllhhllnl

L

a Igo

litli I"____

I.-25 I4 i.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I , ; .-,- .; , -. -. .,.- .

CI

~OF

'9' PRINTED CIRCUIT BOARD LAYOUT

- BY MICROCOMPUTER

'THESIS

AFIT/GE/EE/83D-35 Ernest W. Krausman
Capt USAF

DTIC
SE LECTE

C16.c
FEB 29 1984

DEPARTMENT OF THE AIR FORCE D
/ AIR UNIVERSITYI AIR FORCE INSTITUTE OF TECHNOLOGY

W right-Patterson Air Force Base, Ohio

ONSTATJ:.T',05

' DigE S T, Unlimited 8 4 0 2 2 7 C 5 8
fat public relicso;

U. '..9.9 . .nlimited

- ;.. ' .

... . .. , . .* ° !

APIT/GE/EE/83D-35

Accession For

INTIS GRA&I
DTIC TAB
Unan-miounced 0" , Just if ication---_

• 00V

By
Distribution/

Availability Codes
Avail and/or

Dist Special

PRINTED CIRCUIT BOARD LAYOUT
BY MICROCOMPUTER

THESIS

AFIT/GE/EE/83D-35 Ernest W. Krausman
Capt USAF

Approved for public release; distribution unlimited

DTIC
.,7 ;-ECTE

.,1 FF3 29 1984

,,:.zD

IV -" "'' .- '€.., . . ,-,.,..,;.: . .,,. . - . .. :-. ,v,:... -'v -;..•.. ,.-. v -. - -..-. . . .

AFIT/GE/EE/83D-35

PRINTED CIRCUIT BOARD LAYOUT

BY MICROCOMPUTER

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Ernest W. Krausman, B.E.E.

Capt USAF

Graduate Electrical Engineering

December 1983

bApproved for public release; distribution unlimited.

aja

Acknowledgements

I would like to thank all of the faculty and staff of

the Air Force institute of, Technology who helped in the

preparation of this thesis. Special thanks are extended to

thesis advisor Lt. Col. Hal Carter and reader Maj. Bill

Sutton for spending the time to review the drafts and make

suggestions. Mr. Orville Wright provided information about -

the actual printed circuit board fabrication process and was Io

very helpful.

i.~- J,

V.

Contents

Paqe

Acknowledgements ii

List of Figures v

Abstract ... vi

I. Introduction I-1
Background -1
Problem -4
Scope -5
Evaluation of Methods 6

Circuit Description 6
Component Placement -8
Board Layout -9
Fabrication -11

Layout of Thesis-12

II. General Requirements II-1
Micro-computer Implementation I
Portable -2
Algorithm Independence 3
Interactive -4
User Environment 6

Summary of General Requirements -8
Specific Requirements -9

Board parameters -9
Circuit Complexty -10
Computer specifications- 11
Operating system support- 12
Pascal Requirements-12
Graphics Display- 13
Plotter Output-14
Printer Output -15

Summary of Specific Requirements 16

III. System Design III-1
Command Processor-2
Selecter -6
Connecter -8
Placer -ii
Router -14
System Support Routines

Graphics Support Design- 17
Text I/O 17
Floppy Disk Management- 18

iii

- . ~ * , ~'... * . % *** . *4'• * -.. , ' ' ." .*- . * . * .-.. - .' . ", , * .,%* . ", , .*

Contents
Page

IV. Detailed Design IV-1
Text I/O Routines

Query Modules 1
Menu System -7
Screen Organization 8

File Management System
Basic File Access.............-11
Global Directory -13
DiskID Module 16
Argument Module- 17

Command Processor 17
Graphics Routines -..............-35

Basic Features- 35
Pixel Manipulation 35
Window Manipulation..........-36

Advanced Features 36
Drawing Commands 37
Cursor Motion 38

V. Implementation V-1
Pascal MT+ on QX-10 2

Random Access Files 2
External Procedures and Variables.-3
Static vs. Dynamic Variables -3

LNW and Alcor Pascal 4
Random Access Files 4.....4
Separate Compilation- 4
External Procedure Declarations...-5
Static Variables

VI. Results VI-1
File Size Limitations............... . 1
Improvements to Existing Code -2
Future Developements 3

Bibliography BIB-1

, Appendix A: Basic Linked List File Format A-I

Appendix B: Command Processor Files Structure ...B-1

Appendix C: Installation C-1

Appendix D: QX-10 Source Code D-1

Appendix E: LNW (TRS-80 Model I) Source Code E-1

* Appendix F: Command Processor Users Manual F-I

iv

fop, ,

i "'': Figures

Figure Page

III-1 Overall Block Diagram 111-2

111-2 Command Processor 111-5

111-3 Selecter 111-7

111-4 Connecter II1 -11

" 111-5 Placer 111-13

111-6 Router 111-16
IV-I Query Modules IV-2-6
IV-2 Menu Modules IV-9-10

IV-3 Command Processor Design IV-19-34

4.0

.v.4

"S

.4

V

4*S

4% "i7",'" "" ' - " - -" " " ' ' """ "

. -- . °- -. + . . . °

AFIT/GE/EE/83D-35

4'- Abstract

4..r inted circuit board artwork is usually prepared

manually because of the unavailability of Computer-Aided'-

Vesign tools. This thesis presents the design of a

microcomputer based printed circuit board layout system that

is easy to use and cheap. Automatic routing and component

placement routines will significantly speed up the process.

The design satisfies the following requirements:

A' Microcomputer implementation, portable, algorithm

independent, interactive, and user friendly. When'fully

implemented, a user will be able to select cnmponents and a

.board outline from an automated catalog, e -:tar a schematic

diagram, position the components or ,he noard, and

completely route the board from a single r.1:c . terminal.

Currently, the user interface ard t 1 outer level

command processer have been implemented i- ,asca1. Future

versions will be written in C for better portability. -/

0,

iReproduced from -[be~st available MoY. 1

4. vi

.'4

.'-j.*~'' * '*'," m , * *"** *..*4 "*.'4" . . * . *d" . " " " '- " 4 *' 4* """ " ."" . % "4 " .%.%--

-a.. . . - . , ." % . I~ - a y7 1_

' .- Chapter I

Introduction

Once an electronic circuit design is completed on

paper, the designer has to test the circuit. Testing

usually involves construction of a proto-board or wire-wrap

circuit, which are easy to modify. The next step, once

circuit modifications have been made and tested, is

construction of the actual working circuit. A printed

circuit board is most often used because of its reliability,

low cost, and capability to be easily reproduced.

This thesis will present the design of a printed

circuit board design environment to be implemented on a

micro-computer and used by students and faculty at the Air

Force Institute of Technology.

Background

The process of transfering an electronic circuit design

to a printed circuit board consumes much time and is

error-prone when done manually. Here is a basic outline of

the steps required to complete a printed circuit board:

1. Design the circuit - prepare a schematic diagram.
2. Decide where to position the components on the
board.
3. Layout all of the connections between components.
4. Prepare the artwork from results of 2 and 3.
5. Produce the actual board from the artwork.

The schematic diagram is used to direct the rest of the

process. Often, the person who draws the schematic is not

the person who makes the printed circuit board. All

. . necessary information must therefore be contained in the

schematic.

'a. ' , ", .X - . , - . , ". ''''. g-.-. . " -. " " "v -

-r -5" . TC -T

The next step is the selection of the actual board

outline that the circuit will be placed on. This is usually

determined by other parameters such as the equipment with

which the circuit will be used. The selected board outline

is layed out on transparent mylar sheets using strips of

opaque black tape.

Now that the board is defined, the components must be

positioned within the available area. This is usually done

on paper, because of the amount of trial and error involved.

The problem is complicated because many components have

multiple logically independent elements. A hex inverter

chip, for example, has six independent inverters in one

package. On the schematic, these six inverters may be

scattered all around, making it difficult to decide where to

put the chip. Once positions are decided upon, clear

plastic stickers with black opaque pads properly oriented

for each component are fastened to the mylar sheet.

The most difficult part of the job comes next: the pads

must be connected together properly. If a double sided

board is being made, then the draftsman has more

flexibility. He must decide which connections to make

"4 first, because as each connection is laid out, the remaining

ones become harder to find room for. For each connection,

each segment must be assigned to a layer where it doesn't

interfere with existing wires, because wires cannot cross on

the same layer Wire- for each layer are laid out with

different color ta. (red and blue) on tne same mylar sheet,

1-2

* .* A %*4V~.
1

..*-* - **.* , ~ *~--~- *.*-.*- .* ** * '~w V hV. J

1-. -Q- -a -.. M WN-~--...'--

:4. 4 or each layer has its own mylar sheet with the pads
C' .4_

positioned in the same place on each one. In any case, as

the draftsman proceeds, he will probably have to remove some

previously laid tape to make room for other connections

later on. If component placement is done properly, then the

actual layout or routing step becomes easier, but is still

tedious. A skilled draftsman can become very good at

routing, but it takes a lot of patience and practice.

Now that the mylar sheet or sheets have the completed

artwork on it, the pattern must be transferred to the copper

layer of the printed circuit board. This is a photographic

process which uses the clear mylar sheet as an exposure

mask. A chemical is applied to the copper surface of the

board that makes it sensitive to light. The pattern on the

mylar is then transferred to the light sensitive copper by
exposing the board to light through either the mylar itself

or a negative of it, depending on the process. Another

chemical is then used to selectively etch away the unwanted

copper, leaving behind copper only where the tape was on the

original mylar sheet. If the board has more than one layer,

then each layer must be set in registration with the others

so that the pads line up on all layers.

Once the artwork is prepared, as many circuit boards as

are desired can be manufactured with little additional

expense or effort which is the main attraction of printed

circuit board technology.

1-3

'.' 4 . ",* . . - , -'., , -... , * .-.. 4 -* " % . '' % . 4 ' - "4* .**4".44 " -

' , ' , -, . .. , I . .- .,- - .". . .- . . .- % ' . " .' ". ":$' ' '

.4

Problem

At the Air Force Institute of Technology, small to

medium size circuits designed by students and faculty are

manually laid out on double sided boards by a draftsman.

Resources are available through the Avionics Laboratory for

multi-layer boards, but the original designer of the circuit

doesn't do the layout. Because of the time and effort

required to produce a printed circuit board, many projects

that would benefit from the use of a printed board do riot

attempt to use them, and others are delayed because of the

limited resources available for printed circuit board

production.

What AFIT needs is a way for inexperienced designers

(students who have never made a printed circuit board

before) to create their own printed circuit board artwori it.

less time than the current manual system requires. While

there are commercially available printed circuit board

design systems, they are generally not easy for beginners to

use. These systems are also capable of producing large,

high density circuit boards for production run environments,

capabilities which are not required in most cases at

academic institutions. This tnesis will present the design

of a device-independent, graphics oriented print.d circuit

board layout environment. This system will De designed

specifically for users inexperienced in PCB layout, allowing

them to produce high quality finished noards.

-1-4

. There are a wide variety of computers, graphics

terminals, and plotters available at AFIT, so the ability to

support many combinations of hardware is essential. Device

independence will also allow support of future hardware

acquisitions and permit implementation by other facilities.

Interactive graphics with a friendly user interface will

allow the inexperienced user to successfully complete the

design of his or her board, freeing the draftsman for other

work. Also, if it becomes easy to produce finished boards,

more boards may be attempted in the first place.

Scope

Because the algorithms to perform component positioning

and routing are so numerous, this project will not attempt

to develop new ones or select existing ones for

' implementation. Rather, the primary focus will center

around the design of the user environment, including

graphics support and file management routines. This

environment will provide a base from which follow-on work

can build a fully implemented system. Evaluating the

* resulting user interface will ne a part of this thesis

effort, to discover any areas that need further development.

While routing and placement algorithm implementation is not

the focus of this effort, skeletal routines to test the user

interface will be implemented.

1-5

Evaluation of Methods

Regardless of the system used, there are certain steps

which must be carried out when designing a printed circuit

board. These steps are circuit description, component

placement, board layout, and fabrication. When integrated

into a complete system, the user does not have to be aware

of the divisions between them. Even though they may be

independently operating programs, the user should think he

is using only one program. Several commercial printed

circuit layout systems have been described in the

literature. [1-11] These are integrated systems which

. include all of the above steps, but there are several

implementation differences. The following section will

T elaborate on the advantages and disadvantages of the various

approaches and identify those best suited to a

micro-computer environment.

Circuit Description

Once a schematic diagram of a circuit is drawn, that

information must be entered into the computer. This

information consists of the components to be used and how

they are to be connected. At least four approaches are used

in commercial systems: a compiled definition language, hand

digitization, fully automatic digitization, and interactive

keyboard entry.

Definition language - Three of the systems [1,5,8]

require the user to describe the components in a special

language. Although easy to implement, tnis methcd has

1-6

4 -

several disadvantages: The user must learn tie language

before he can use it. Logic errors in the input file will

not be obvious unless a plot of the schematic is produced.

Even then, pinpointing the location of a stray wire can be

difficult. With enough experience, compiled languages can

be easy to use, but casual or first time users won't have

the time to get that experience.

Digitization - Most of the systems [3,4,9,10] use this

method to input schematic data, which requires the use of a

:7 digitizing tablet. The stylus is used to locate a component

and trace or highlight the desired connections. This is

quick and reliable, but the user must know how to operate

the digitizer. If the same digitizer were to be used

everywhere, this would not be of much concern. However, the

availability of a suitable digitizer cannot be assumed.

Automatic digitization - One of the systems [11] uses

fully automatic digitization. The schematic is drawn on

paper and then scanned by the digitizer. This requires

extensive software support to extract the circuit from the

digitized pattern. Additionally, the schematic must be

originally drawn to a set of specifications so it can De

read. From the operator's point of view, this is the

simplest way to go, but is too expensive for a small system,

and training would be required before schematics coulo be

consistently interpreted correctly.

1-7

Interactive via keyboard - The last method [6,7] allows

the designer to construct the schematic diagram on the

graphics display, using an on-screen menu with cursor

selection. The display is a window to the entire schematic.

This has the benefit of not requiring any special format for

the schematic. Additionally, the hardware requirements are

minimal. Graphics displays are more readily available than

digitizers, and will be required for the placement and

routing phases anyway.

Component selection is handled almost identically in

each of the systems - a library of predefined component and

board parameters is maintained from which the desired

-~ components can be selected. Users may add to the library at

any time. The type and amount of information about each

component includes physical parameters, electrical

parameters, logical parameters, and manufacturing data.

Although library size on a micro-computer would be

necessarily smaller due to storage limitations, it is

important to anticipate future needs for the library and ne

anle to support them.

Component Placement

Once the computer knows what components to use and now

they are to be connected, they must ne positioned on the

board. Various algorithms to perform automatic placement

are widely used (pairwise arid triplet exchange,

force-relaxation migration [6]), but they are not as

necessary for small boards. The manual placement of

I-8

,', , _ ,, ,"~~~~~~~~~~~~~~ ~~~.."..." . . ,-. ". ,.. *..*.,[.[. ., . ..- -. ' v.

components, if done with good judgentent, should be adequate.

However, it must also be easy for the user to change his

mind and reposition components. Additionally, tne impact of

a specific placement should be made visible before routing

is attempted.

Commercial systems use manual placement as a first cut

at final placement to speed up the process. The assumption

is that the designer has a pretty good feel about what

components should be close to each otner, and automatic

placers simply optimize this initial placement. Even if an

automatic placement algorithm is to be implemented, an

interactive manual placer is still required.

Additional help is provided to the user in the form of

connection distribution displays [3] hich provides a wire

' -- density plot along both axes, and other graphical aids like

rulers, exact component positions, a:. prompting for next

best location.

Board Layout

Now that the components are positioned on the board,

the previously identified connections must be routed. The

greatest portion of the literature concerning printed

circuit board design automation is devoted to descriptions

of various routing strategies. The basic types are the Lee

or maze router, channel routers, and line search routers.

Each of the strategies is adapted for different

circumstances, out it is important to realize that even

though they seem very different, the same information about

I1-9

the components and the board configuration is required by

them all, and the final results can be represented in

similar forms. The focus of this thesis is the development

of a data structure that can support any router, not the

router itself.

The commercial systems do not use highly sophisticated

routines, but rely on combinations of the Lee router and the

line search algorithm. Channel routers are designed more

for VLSI routing applications, and none of tne systems

examined incorporated a channel router.

Automatic routers usually can achieve 80-95% of the

-. connections, while the remainder must be inserted manually.

A batch mode router will attempt all connections and veport

failures when finished. This may mean that the operator has

to try a new placement and start again, or manually edit. the

resulting output file. An interactive approach is much more

adaptable, and relies less on a particular router. The

commercial systems discussed above all incorporate an

interactive routing strategy.

The router to be used should be selectable by the user,

as should the amount of routing to be done. For example,

after an initial attempt to route the entire board,

unfinished connections can be attempted one at a time using

different routers. Existing paths must be able to be moved

to make room for the failed paths. Because the user must be

allowed to move paths, a check must be performed to prevent

design rule violations.

~I-I0

S, .; -:. -.'.- * -.-.- -.'.'.?' ..'.L.. '.- ... '".,..C...', ' _ .$

There are two approaches to achieve 100% routing of a

printed circuit board after an initial attempt with an

automatic router:

Manual editing - In this case, unrouted connections are

manually filled in by the user. By allowing the user to

*' specify where those connections are to go, the possibility

exists for design rule errors to be introduced. Also, the

graphics display must be able to present the actual board

layout in detail. The systems that use this approach

incorporate route optimizations to clean up paths entered by

the user.

Interactive re-route - A better approach is to allow

the user to delete previously routed paths and invoke the

automatic router iteratively. The user can usually identify

the congested areas easily. By removing paths that are

causing problems and routing them later, more of the board

can be routed. Because the router does all the actual

connections, design rule violations can be eliminated. Of

course, the router must enforce the design rules.

Fabrication

After the board is routed, artwork suitable for

fabrication must be generated. Because conventional pen

plotters do not have the required edge definition to produce

a useable mask, they can only be used for a check plot. A

photo-plotter must oe used to produce the actual artwork.

This can be handled by a post-processor, because no

interaction is required from the user. Consequently,

I-l

" ... -.'.5 5 .,,..... ,.-

development of the post-processor has no direct bearing on

the PCB design process. It can be handled off-line in a

batch mode and will not be a consideration for this thesis.

The commercial systems also have capabilities to produce

tapes for numerically controlled drilling machines and

ordering information to keep component stocks up to date,

which are also not directly related to this effort.

Layout of Thesis

This chapter has examined some commerciaJ mini-computer

based printed circuit board design systems, and evaluated

the methods and approaches used. Chapter II will explain

the requirements that the fully implemented layout system

must satisfy, both in general and specifically.

Justification of these requirements will also be presented.

Chapter III will describe the overall system design of the

printed circuit board design environment, and explain the

function of the major subsections. Chapter IV will describe

in detail the designs of the sections outlined in chapter

III. Chapter V will describe any implementation

difficulties and present evaluations of the user interface

and the file management routines. The final cnapter will

provide recommendations for future efforts and present

conclusions about the success of the project.

1-12

*1 .2 ' ' , j, , "." "." ' ' .' ' ' .€.".-"-"."-''""'-''.''''' .. •.. . ". j ." " " . .

Chapter II

General Requirements

Briefly, AFIT needs an interactive printed circuit

'. board design tool that can be implemented on a

micro-computer, is portable, and algorithm independent. This

tool must allow the user to describe the circuit in

,*" sufficient detail so it can be routed and fabricated.

Any student or faculty member should be able to use

almost any computer available and easily obtain a finished

printed circuit board starting with an ordinary schematic.

This is a very simple statement, but it contains the

essential requirements for the printed circuit board design

environment to be developed by this thesis.

Although a fully implemented printed circuit board

layout system is beyond the scope of this thesis, all of the

modules will have to meet certain requirements to be able to

communicate with other, and the basic routines that the

layout modules will require must be implemented as part of

the nucleus.

Micro-computer Implementation

There have been many PCB layout systems implemented,

but they require the use of mini-computers. They are meant

for commercial use, so the range of boards they must handle

encompasses large dense boards with hundreds of integrated

circuits. Because the circuits designed at AFIT are modest

in complexity and many current micro-computer systems

approach the capabilities of earlier mini-computers, it is

Se.' -

*,, . ,_,, :... -. - '. k , k ¢ . '.. . . , . , < -< , .L- _ ." I " .-. , ' .- ' '.

* practical to implement a PCB design system on a micro. No

special hardware will have to be purchased to support it.

The initial target machine for implementation is a 4

MHz Z-80 based machine with 48K bytes of RAM and 400K of

floppy disk storage. This configuration should be the

minimum system considered for this project.

Portable

Because the available software and hardware

configurations of the available computers may differ

greatly, the entire system cannot be expected to be

implemented identically on all of them. However, all

differences should be transparent to the user - a constant

user environment will enable users to use different

implementations with the confidence that it will work the

same on each. As a result, all machine dependent features

must be isolated. Assembly language cannot be used except

for the lowest level I/O routines, because they will have to

be re-written for each specific computer and peripheral

device. Disk file management routines cannot rely on the

resident operating system for the same reason. Consequently,

all access to the outside world must pass through a

standardized set of procedures.

The language used to write the machine-independent

portions must be available on all of the target machines.

FORTRAN IV is almost universally available, out it is

difficult to manipulate complex data structures efficiently.

", ~* Although less standardized than FORTRAN', Pascal posesses

11-2

p. IT V

much more powerful data structure manipulation facilities.

The difficulties with Pascal center around non-standard I/O

processing. By forcing all I/O to be performed through

standardized subroutines this can be eliminated as a matter

of concern.

Another difficulty with Pascal is the separate

compilation of procedures and functions. Most implementa-

tions allow it, but it is performed differently on each.

Since the installation procedure will only have to be

performed once on each computer, this is not as important as

it first appears, and is outweighed by the ease of coding

and the shorter program developement times afforded by

Pascal.

i Algorithm Independence

To allow for experimentation with different routing and

placing algorithms, the system must be modular in structure.

This requires that a well defined intermodule communication

protocol be adhered to by all components of the system, and

that each module make few assumptions about how other

modules do their job.

All modules must differ only in the function they

perform - the command syntax should not change, for example.

There must be no direct I/O performed by any module - all

I/O processing must pass through the predefined lower level

I/O routines. This will eliminate possible inconsistencies

in I/O handling.

11-3

.4v

.- %,. N: . - .- - - -. I. - -

- .

*...9" ,' A library of standard components and board outlines

must be maintained to prevent duplication of effort. A well

maintained and complete catalog from which to select

components is preferable to defining them each time they are

used, and allows users unfamiliar with the detailed

component parameters to use them anyway. This library must

contain all the information required by the other modules,

so that future enhancements can use existing component data.

In other words, the structure of the library must be

expandable.

Other data structures used by more than one module must

include the interconnection list and the location and

Ai identification of components on the board. These must be

general enough to allow for future expansion of

capabilities, not limited to any specific algorithm or board

technology.

Interactive

To be truly interactive, the user must be kept aware of

the progress being made. He must be able to interrupt a

process, make a few changes, and continue. The best way to

show progress when routing a board is graphically - draw

each connection on the screen as it is completed. Routing

can be completed a single wire at a timde, or whole chunks
49

can be attempted at once. By putting the user in the]oop,

the demands on the router are lessened and micro-corputerK> implementation becomes attainable.

11-4

41

*... Placement requires a graphic display indicating

possible congested areas on the board as each component is

positioned. Immediate feedback allows the user to decide

which placement is best. Simply drawing straight lines

between electrically common points will indicate where

routing problems are likely to appear.

The requirements imposed on the graphics display depend

on the complexity of the circuit to be drawn. A low

resolution display can handle a small, simple board; higher

resolution is required to display more complex boards.

Scrolling through windows can increase the effective size of

-. the display at the expense of execution time. A compromise

is the use of fixed windows, one of which can be viewed at a

time. Four windows would allow four times the limit of the

display size to be drawn. For example, the area of the

display of the target macnine is 8 X 5 inches, with a

resolution of 13 mils. If a 50 mil routing grid were used, a

board smaller than the display area could be viewed all at

once, while a 16 X 10 inch board would fit into four

quadrants.

'. .Because an ASCII keyboard is universally available as

4an input device, it will be used as the cursor controller as

well as for regular-text input. Joysticks, trackballs, mice

and assorted other gadgets may be more powerful in specific

implementations, but they cannot be relied on to be

generally available.

11-5

.

., User Environment

The environment that the user interacts with includes

the hardware and the command set. While certain aspects of

the hardware cannot be held constant, the command set should

not vary. A given sequence of instructions should produce

the same results on independent computers. As far as the

user is concerned, the only differences between two

implementations of the system should be cosmetic. Large

systems may be able to handle larger boards or work faster,

however.

A normal level of familiarity cannot be assumed - items

like directory organization, what constitutes a legal

filename, how to access files, because these tasks are not

N ft constant between computers and aren't directly related to

the job at hand, i.e. designing a PCB.

Users must be shielded fron operating system errors

because of the non-standard way they are handled. If a

command requires that a disk file be opened, for example,

the results can be different if the file doesn't already

exist. A new file may be created, or another logically

different file that happens to have the same name may be

written over, neither of which was intended by the user. To

avoid problems like these, the system must make explicit

cnecks before issuing commends to the operating system to

insure that all required files are where they are supposed

to De. Non-recoverable errors must be eliminated wherever

> possible to keep the user out of computer dependent

11-6

44.~. ~ W.' ~~ 4 r '% 4 ~ Vv %'.% Na?* . ,%. . %. " . . % .•, °•

- ; ;-- * -

- situations.

Constantly having to refer to various manuals will

discourage many casual users, so help should be available

where required. The help provided must be specific enough to

allow the user to continue or let him know he can't do what

he wants to do. A simple prompt should never be displayed

without explanation. Either available options or specific

questions should be asked with indications of valid response

ranges.

511-

.5

5...%

'A

II1-7

'.I
'' .4 % .]% ' %J ; . -2 .'."..'.-'J % ' '.. ., % % • ' .J ' °.-.-, '.- .. '''' j ... ,t "% . .

A Summary of General Requirements

The printed circuit board design system developed by

this thesis, when fully implemented, must allow a user to

layout, route and fabricate a printed circuit board working

from a schematic diagram. Additionally, the following

requirements must be satisfied:

Micro-computer implementation: Able to run in a minimum
system consisting of an 8 bit processor, 48K bytes of
RAM and 400K disk storage.

Portable: Written in standard Pascal using standardized
routines for I/O processing. Cannot be dependent on
specific hardware, peripherals, or operating system for

- .'" proper operation.

0' Algorithm Independent: Modular in structure to allow
experimentation with routing and placement algorithms.
Data structures must be extensible for future growth.

Interactive: Use a graphic display to visually show the
current state of the system to the user, allowing him
to intercede when he wishes.

User Friendly: Maintain a constant user environment
between machines and shield the user from machine
dependent factors. Provide on-line help when requested
and explain available options. Encourage casual and
first time users.

*
wIV

11-8

l..-

... . .*.. s

- - - -. .. w . -, , -- . . . - . - .0 .- '.7 7 -. - -5. .* -J. .
-

•

~.-

F "'- Specific Requirements

The requirements addressed in the previous section

apply to the entire printed circuit board design system. The

following section will describe the types of circuits

designed at AFIT and outline the specific requirements that

must be satisfied by the various pieces of the system. These

specific requirements include actual board parameters,

circuit complexity, implementation requirements, graphics

display capabilities, plotting capabilities, and the user-a

interface.

Board Parameters

In general, the maximum board size that the system will

be able to handle will depend on the specific capabilities

of the host computer. Rather than leaving this open-ended,

however, a practical limit on board size is 12 X 8 inches.

This is the largest size board that is commonly designed

presently, and most are smaller. Larger boards can be

designed in pieces, but the limits of circuit complexity

described below will make larger boards impractical.

Double sided boards are the most common variety that

are designed by hand, and four layer boards are currently

supported by MOSIS. The problem with multiple layers is the

amount of additional information that must be maintained.

For example, with double sided boards, all vias exist on

Doth layers at the same spot. With more layers, it is

possible to have vias between inner layers that don't pass

through to the outer layers. This requires via information

I1-9

, _, ,

to be maintained separately for each layer. To support

future advances in technology, the data structures used by

the router must recognize the existence of multiple layers,

even if not all of the layers are supported. A practical

upper limit on the number of layers to be considered is

four, with two types of vias: those that penetrate all

layers, and those that go between adjacent layers only.

Routers that do not support all the layers will only

use the ones they recognize, but support for all four layers

44 must be built into the interface of the router and the other

modules. Preferred directions of wire segments on each of

the layers must not be constrained by the data structure,

because different routers assign segments to layers using

other considerations oesides horizontal or vertical

orientation.

Circuit Complexity

To keep the circuit density reasonable, the number of

integrated circuits will have to be limited to about 1 per

square inch. This will allow about 90 16 pin IC's on a 12 X

8 inch board, or 50 on a 10 X 5 inch S-100 board. Higher

densities would quickly outstrip the memory and disk

capacities of most micro-computers. Even these densities may

be too high for some systems, but the data structures must

still work, i.e. be downward compatible.

A routing grid size of 50 mils will support a maximum

of one wire between adjacent pins of an IC. While higher

. "densities are possible, the complexity of the circuits to e

II-10

designed by this system do not require higher densities. The

current limitation on grid size is a minimum trace width and

separation of 10 mils, so a 20 mil grid is the minimum that

can be fabricated. Even though a router may support such a

small grid, for this project a 50 mil grid will be the

• -minimum size grid required. Gridless routers may make more

efficient use of board space but the data structures

required to support them are more complex than those that

are constrained to a grid. A slight loss in generality is

preferable in this case, because implementation will be that

much easier.

Computer Specifications

.1 To realistically implement this system will require a

7 computer with the following capabilities: 48K of memory, two

floppy disks, and an ASCII keyboard. Additional hardware

requirements for the graphics display will be discussed

separately.

48K bytes of memory will be required to allow

reasonable module sizes to execute. Because the system will

be segmented into independently operating programs, with no

common memory allocated, each module will have the entire

resources of the computer available as it executes. This

dictates that any information exchanged between modules must

reside on disk.

At least two disk drives (Single Sided Single Density

8" or Single Sided Double Density 5.25") must be available

to allow separation of project files and systerm modules.

IlIl

Because the modules will be chained together, they must all

be available at the same time. One disk will be dedicated to

the support of the system software ana must be available

.. on-line at all times. If more than two drives are available,

then it may be possible for two drives to be dedicated to

system software. In any case, it will be necessary for all

"' of the major modules to be accessable without switching

disks.

The keyboard requirements are very minimal - the

computer must be able to respond to individual keystrokes

and the keyboard must generate the standard ASCII character

set must. Because many computers have special function keys,

b', the keyboard input support routines must be able to be

configured for each implementation.

Operating System Support

i .,The host operating system under which the printed

5circuit board design environment will be executed must

support the following functions: random access files and

error trapping. The error trapping must allow a program to

detect and correct its own mistakes, if possible. This will

prevent confusing the operator witn potentially misleading

error messages. Random access files with fixed record

lengths will be used extensively, and must be availaible.

Pascal Requirements

The Pascal compiler must support the following

capabilities: random access files, separate compilation of
procedures and functions, and linking with machine language

I11-12

V%

S.. subroutines. Additionally, it should conform to the standard

outlined in User Manual and Report by Jensen and Wirth. The

portaole portions of the system will assume conformance with

this standard. Compilers or interpreters that do not comply

may still be used, but implementation may be more difficult.

Graphics Display

To provide a reasonable representation of the circuit

board on the video display, the graphics resolution must be

high enough to show the minimum routing grid size. To be

displayed in actual size, a 50 mil grid will require a

resolution of at least 40 points per inch in both the x and

y directions. A square aspect ratio will be used by the

graphics routines, so the lowest resolution axis must be

used for comparison purposes.

S:..'. The display must be bit-mapped with the graphics memory

available for both reading and writing, so the program will

be able to determine the status of any pixel, as well as

turn it either on or off. Higher level commands, such as

drawing lines, boxes, or circles, will be provided by the

system if the graphics display does not support them

directly. This support will not be as efficient as hardware

.. support, but will allow 'dumb' graphics displays to be used.

Characters and graphics must be simultaneously

displayed, but it is not necessary for the text and graphics

to be overlaid. Separate areas for text and qraphics will be

fine. The only purpose of this requirement is to ensure that

any messages that the user must see can be dispiaycu without

11-13

u - : . ~ .S~

- erasing the graphics display.

Plotter Output

2 Because the faorication artwork requires very high edge

definition, which cannot be generated by ordinary pen

plotters, the plotter will be used only to produce a

checkplot in the initial implementation. This checkplot

should be drawn in actual size, so the plotter must have a

resolution of at least twice the grid size being used. Even

higher resolution is necessary to distinguish the pads and

other features, so a working minimum resolution of 100

points/inch is called for. Most plotters have much better

resolution than this, so no problems exist with this

requirement.

For maximum compatibility, the only plotter features

which are required are absolute X,Y addressing with the pen

either up or down. The paper size is not important, because

the plotting routines will partition the plot as necessary.

Smaller paper sizes will require more pieces, however.

To distinguish the different layers on the plot, either

multiple colors or stipple patterns may be used. Stipple

patterns will require blowups of the area of interest to be

. seen. As with the graphics display, features such as

scaling, circle generation, ect. will be provided by the

system if the plotter will not perform them directly.

1 -

V.,,

11-14

Printer Output

Dot matrix printers with dot addressable graphicsEl. capabilities may also be used to provide a printed copy of

.. the video display. The resolution of the printer graphics

should at least match that of the video display, but will

more likely be greater. Drawing vertical lines on some dot

matrix printers is a problem because of gaps between printed

lines. This would produce a hard to read plot and would be

unacceptable. The printer must be able to produce

continuous lines in both horizontal and vertical directions.

Additional plotting routines will be required to

support a dot matrix printer. Both the video display and the

plotter may be randomly addressed, in the sense that lines

may be drawn between any two points independent of what has

1.* already been drawn, or what will be drawn next. A dot matrix
5'.'

printer requires that the entire picture first De drawn

either in memory or on disk, because the paper can not be

reversed without a great loss of accuracy. For each line to

... be printed, all of the dots must be known beforehand.

.

;P .J

..

I.::

[I1-15

p -.

'L "

Summary of Specific Requirements

In addition to the general requirements, the following

'- specific requirements must be met to ensure practical

implementation:

Board Parameters
Maximum Size of 8 inches by 12 inches

*: At least 2 layers, maximum of 4
V. Fixed grid size of at least 50 mils

Circuit Complexity
Upper limit of 1 I.C. per square inch

Computer Specifications
V. 48K of Random Access Memory as bare minimum

Two single sided single density 8" or single sided
douDle density 5.25" disk drives

Standard ASCII keyboard
Graphics Display or Terminal
Plotter Interface

Operating System
Random access files
Report errors to applications program

Pascal
Random access files
Separate compilation of procedures and functions
Linking with machine language subroutines
Conform with User Manual and Report standard

Graphics Display
Bit mapped pixel display
Graphics memory accessible for reading and writing
Resolution of at least 40 points/inch
Simultaneous display of text and graphics

Plotter Output
Absolute X,Y addressing

S.k- Pen up, pen down
Resolution of at least 100 points/inch

Printer Graphics
Dot addressable graphics capability
Resolution at least as high as Graprics Display
Continuous vertical line capability

11-16

' V'> Y

,. , . -. .-. -... -. - • .

Chapter III

System Design

The PCB layout system will consist of the following

major components: command processor, component and board

data base, and layout modules (the selecter, connecter,

placer, and router). Lower level functions include the disk

interface, graphics interface, and text I/O modules,

containing all procedures dependent on the hardware. Figure

III-I is a top level block diagram showing how they

interact. Appendix B contains the details about the Command

Processor files, Appendix C defines the Component and Bcard

Data structure, and Appendix D defines the format of the

Project Files.

*4°

'p.',.

a...j
*4*4*-a

I-a-

a.-

Command Prces sor I -

rguments ri s

DEI Sks

Cornpnent Bor PrjcF f1_
S1 0 ,c; nnec:ter .I . ,,_.. ,

Figr III1 Ovrl lc iaga
. . 7i i

: cm..oriFnetf Board ~ jProcot Fi los
uJ.,.al o8 .iat.a.lc:og--t"-'I I

b,'%•Figure II-l. Overall Block Diagram

Command Processor

*Function

This module defines the environment that the designer

operates in. Different operating systems perform the same

tasks in different ways, causing confusion for operators

wnen they switch from one to another. Because the PCB layout

must be computer independent, the resident operating system

must be made transparent to the user. The Command Processor

will basically be a mini-operating systei tnat controls the

. a' operation of the computer's resident operating system,

111-2

,a!P., :.::t ,+ .+..,+,m .+,.+ 9 + ,,. .,- ,

similar to a shell under Unix.

Requirements Satisfied

The burden of user friendliness falls mainly on the

command processor. As layout modules are further developed,

the only thing the user should notice is an improvement in

operation. No new commands will have to be learned, because

each module will communicate to the user through the command

processor. If tne user becomes confused at any point, then

help will be available immediately.

A major function of the command processor will De error

handling. Operating system error messages are usually

difficult to understand, and cannot be relied on to be

specific. For example, having the wrong disk in a drive can

lead to a wide variety of errors, but the error messar5

reported to the operator probably won't be 'The wrong disk

is in drive 1. Please insert disk ABC and press any key

to continue.' General purpose operating systems can't

provide nice error messages like that because they don't

know what the operator is trying to do.

Algorithm independence is provided Dy the command

processor. The initial layout modules will De very skeletal

in function, but the framework will exist into which more

complete versions can be inserted.

Structure

The command processor will consist of the following

major modules (see figure 111-2):

.
~ V I-3

'€ , ."'€,-"", ''. " " " -2".' '. A" . ?

- - Resolve Error: As mentioned before, the command

processor will be responsible for the majority of the error

handling. This module will perform this job and return

control to the proper module, if possible.

Determine User Identity: This module will be

responsible for maintaining an updated list of users and

their passwords.

Select Option: Each user will have a list of projects

he is currently working on. This moduie will aliow projects

to be selected, created, deleted, or workec on. Projects do

not have to be completed in one sitting and tnis module

will be responsible for keeping track of the current state

*of each project.

OExecute Next odule: once a project i5, selected to be

worked on, the appropriate layout module musr Le called in.

• .-. This module is responsible for transferrinz control to the

next module.

1

m-4

"-F.

L":2III-4

- :O f irf 1- b . . .

4.e

Op i 1

'e Se ect . EV-, r, t_ Ic -

Figure 111-2. Command Processor

Because of limited memory space available in many

micro-computers, an overlay structure will be implemented.

* Each module may then consume all memory while executing,

with control flow and parameters passed between modules via

an argument file and the Command Processor. For example, if

9... T ; I i
-. h. Plce moul is fiise and th oue sob

the Command Processor. In turn, the Command Processor will

examine the command file and execute the appropriate module,

the router in this case.

The only entry point to any module will be through the

Command Processor, and all modules will return control back

to the Command Processor. This way, each module must only

know how to invoke one other module, but the command

nprocessor must be able to invoke all other modules.

~111-5

..&,,"%,;', ,j%,.' , ,,i,,"%," - ,% ,%" '% ""-'" " ."". ."",• •' """ ..",-.-."" , -- "- "" . " '"
"

• " . ." '-"-".--"."'

Selecter

Function

This module will consist of the component and board

data files and the library routines required to maintain

them. Two levels of information will be maintained -

physical and logical. The physical description provides

.details about the package, such as how many pins there are,

how they are spaced, etc., while the logical description

assigns names to the pins and to the component. Library

maintainence functions will include addition, deletion, and

editing of component and board entries as well as the

selection of components for projects.

:" Requirements satisfied

\ Algorithm independence depends on access to the

required information. In other wordds, no matter what

algorithm is to be used for placement or routing, the same

information is required by each. The selecter is responsible

for maintaining enough information about each component to
'•5t"

satisfy the needs of any router. Also, the number of

components selected cannot exceed the specified maximum

circuit density of 1 I.C. per square inch. If new boards are

defined, they must not be allowed to exceed the maximum

allowed board size.

Structure

The main modules of the selecter are as follows (see

figure 111-3):

~111-6

-,-f -~ I.. .. E: 0 .a a

a.

ii
°

t

Figur .- 13 "el"' r:i II

S Board -il beasked tom

vai..ors availabl e.

necessary parameters.T...

Upda te. C~g iCatalo:Inwconet wer decie

fl. j

, - . - .. - a -. . - . , _

[:. ;Figure I11-3. Selecter

h pSelect Board: The user will be asked to select from the
"* various boards available. If it is no,- presently in the

erm library, then the user will be asked to describe all~necessary parameters.

.. ! Select Components: This module is very similar to the

previous one, but there are many components to select, and~only one board per project. Additionally, the physical

d~escription of existing components may oe used when defining

new components.

Update Catalog: If new components were described for

•"! the project, the user mywish to add them to the library

",. permanently. Also, existing definitions ma1y be changed if

!! errors were made in the original entry or if the component

"-. actually changes.

111-7

N.-t-' ,'' - ". ."a..q

in.

If the Selecter is re-entered after a portion of the

board has been routed, a portion of the board may be

extracted and added to the component catalog. This will

essentially be a "super-component", but it will be treated

like all other components. Because the component physical

definition includes a provision for defining traces, it will

be possible to use common circuits on many projects.

This has more implications for other types of circuit

routing than printed circuit boards, because tne components
are fixed in size and number of terminals. For VLSI design,

where the "wires" used for routing also compose the circuit

elements, it is very important to be able define components

in terms of other components.

Interface

The Selecter produces a project flle containing all

necessary information about the componEnts and the board

that the user has selected from the catalog. Each

individual project will have its own subset of the master

catalog.

Connecter

'3. Function

The Connecter is responsible for determining from the

user how the components are to be electrically connected.

.4 Each set of electrically common points is referred to as a

net, and is usually identified by some signal name.

111-8

-o

To allow for maximum routing flexibility, connections

will be specified in terms of logical elements, or gates,

instead of actual component pins. For example, consider a

TTL 7400 Quad NAND. This component has four logically

identical two input NAND gates, which are independent of

each other. Each gate used in the circuit may be assigned

to any one of the available positions within the component.

Requirements Satisfied

While the command processor is responsible for most of

the user friendliness, the layout modules must Ce

interactive. In its final form, the connector may include

complete schematic entry editing facilities, but h initial

implementation will not include this capabil ity. Instead,

the user will identify all elements associatec -tih each

net. Then for each net, the elements will be claw:. o: cae

display with available terminals highlighted. lentiflcation

of which highlighted terminals should be connected completes

the cescription of that net.

By only allowing a net to be composed of terminals not

associated with any other net, many possible errors can be

avoided, which also contriuutes to a user friendly system.

For example, elements like resistors nave two terminals

which are interchangeable until one side is conn(cted. Once

one terr,,inal is assigned to a net, it vecomes unavailaLle

for further consideration.

'a. 111-9

AL: -C
:1L

* - * .- -

'" *~*.Structure

This module will be simple in structure because the

user will be doing all of the work. Each of the modules

described below will be an interactive procedure. Here is

the general job required of the connecter (see figure
4..•

111-4):

Net Identification: The user will be asked to identify

each signal net by name. For each net, the user will be

prompted for the gates or elements whiich oelong to that net.

As the elements are identified, they will be displayed on

the screen with available terminals highlighted. Once the

net elements have been selected, the user will be asked to

identify which of the available terminals belong to the net

being defined.

Note that the components selected previously will

determine the elements which are available to choose from.

For example, each 7400 component provides four 2 input NAND

elements to the pool. Other components correspond

one-to-one with logical elements, such as discrete resistors

and capacitors.

Net Editing: After all the nets have been defined by

the user, any element with unused terminals will be

displayed for verification by the user. At this time, any

previously described net may be edited.

111-10

-s.4

% .. *

uc')nna':'T-

i Net ' IEt.
identlf iatjior, - E. .,i,'

Figure 111-4. Connecter

Interface

The project file will be updated to indicate the names

of the signal nets and which elements belong to each net. If

a component consists of more than one element, then final

assignment of elements to components will be handled by the

next module, the placer.

Placer

Function

The Placer will decide where to position the components

on the board and will assign elements to components in order

to make the routing job as easy as possible. Although

automatic placing algorithms have been developed, the first

S4 implementation of this system will require the user to do

the actual placing and gate assignment.

--.

% *- ." .,'.."."" ." .2. .-" U * * "'-"* . " . . ." '"- " ,".". .. " ,'*2. 'U* "%;U... 1. .4 % '.-'.U. --....... U - '.. \'*

Requirements Satisfied

Like the connecter, the placer must be interactive and

user friendly. Interactive graphic displays will allow the

user to see the impact of certain placements as he goes

along. As each component is positioned on the screen, a line

will be drawn from each of its terminals to the closest

terminal in the same net already placed. The resulting mass

of lines will show possible congested areas and be a guide

to further placement. Selection of whether or not to display

the lines will be under the control of the user, and can be

toggled at will. As components are positioned, the maximum

circuit density cannot be exceed. The placer is responsible

for enforcing this requirement.

Structure

The component placement problem consists of three

subtasks as outlined below (see figure 111-5):

Initial Placement: For each net in the project file,

the components involved will be displayed on the screen.

Each component will be positioned on the board by the user.

The nets with the most components will be positioned first

so that they can be grouped together.

Element Assignment: When all of the components are in

place, the user may wish to rearrange the element-component

assignments. This will be easier to visualize once the

components are in position.

111-12
-N

Placement Improvement: Improvements to placement may be..

made by exchanging components, either automatically or under

user control. Initially, the user will be in total control

of the placement process, but future versions may include

automatic placement.

The process of reassigning elements may be repeated

after the components are rearranged until the user is

satisfied with the positions.

9.:

In it! t l Gate i -i,:.e ent
F'I a:emel t -ss " ,.me.t."

! -T

15 Si 11._.t L t. , r'i c -es - , 1ci~

Figure 111-5. Placer

Interface

Once the components are positioned, the placer will

resolve the references to the net-list in the project file,'4.-.

assigning x y pin coordinates to each element terminal.

'.

I111-13

.4*hz

.'

Router

Function

The project file now contains the names and terminal

locations of each point to be connected together. The

router's job is to correctly connect each net without

cross-connections with other nets and without leaving any

net portion unconnected. Several algorithms have been

discussed in the literature, which fall into three general

catagories - maze, line, and channel routers. Selection of a

routing algorittim is beyond the scope of this thesis, and

tne initial implementation will basically be a manual

system, in which the user decides where to place

connections. However, all of the irformation required by a

routing algorithm is available along with the necessary

support routines.

Requirements Satisfied

Experimentation with different routing strategies will

be made much simpler with the support provided by this

system. The router will be interactive as well. Most of the

specific requirements, however, must be satisfied by the

router, such as the grid size, and the number of layers.

Structure

There are many ways to partition the routing problem,

and here are the most basic steps to be completed (see

figure 111-6):

111-14

i .5 'V- % -. :; .;. .:. /. v •v< .. :' >i' .

From-to determination: There are many ways to connect a

given list of terminals together into a net. Usually the

closest terminals are connected together, followed by the

next closest, until the net is broken down into a set of

terminal pairs, often referred to as from-to pairs (FROM

terminal A TO terminal B) . The initial implementation will
rely on the user to do the from-to determinations, so this

module will simply ask the user to decompose each net into

an equivalent set of terminal pairs.

Net Ordering: Now that the nets are composed of pin

pairs, the order in which to route the nets must be

determined. Once again, the shortest nets are usually routed

first, but some routers ignore net groupings and simply

route individual from-to's, while others ignore from-to

groupings and route entire nets at a time. In any case, some

• "order must be chosen by the router. Once again, the user

will be asked to decide in what order he wishes to route the

nets. Help will be available in the form of information

about the sizes of the remaining nets.

Routing: With information about specific terminals to

be connected, the router is responsible for finding a legal

path between those terminals. The initial implementation

will require the user to identify where to place traces to

connect terminals. The terminals to be connected will be

highlighted on the display, and the user will riot be allowed

to violate any design rules during the routing process.

III1-15

Plotting: Once a circuit or a portion of a circuit has

been routed, the user may want to generate a plot for closer

examination. This plot may be drawn to any scale desired,

and any section of the board may be isolated. Because the

plotting will take much longer than drawing on the screen

A display, it should only be used when the details omitted

from the screen are important.

I From-To - Net R io-t ig
. j Determi nation Order n,,,

T IT IT

Net LIzt Project F r, y 1 te d

; I o .t I

Figure 111-6. Router

Interface

All of the information required by the router is

present in the project file. As routing proceeds, partially

completed results will be maintained in the project file to

allow work to be spread out over many sessions if desired.

111-16

Z.°

S_ .• . ,- - . ,-. - . - .-. . ,, .- ' "

System Support Routines

Graphics Routines

All of the layout modules will require the use of the

grapnics display. To support them, a set of universal

graphics interface procedures will link the portable Pascal

modules to the machine dependent hardware.

Two levels of procedures will be written - those

supporting basic and advanced features. Basic features

include individual pixel control and clearing the screen.

N. Advanced features include drawing lines and noxes. All of

the advanced features will be written in portable Pascal and.will

will call the basic routines. If the graphics display

41. hardware supports one or more of the advanced features, the

implementer may replace the appropriate subroutine with a

machine dependent equivalent that satisfies the calling

sequence.

Text I/0

To support the user friendly nature of the system, a

query module will provide features such as input validation,

error messages, and on-line help. By sending all requests

for information through the query module, the format will be

identical.

A menu selection module will De availanle to allow the

user to select from among many choices in a consistent

manner. As with the query module, all of the menus will have

the same structure and commands wnich will aid the user.

111-17

Floppy Disk Management

The entire system cannot be assumed to be available

on-line at all times. For example, the program modules, data

base files, and project files must be allowed to be spread

out over several physically separate floppy disks. Because

this will require the user to change disks, the possibility

of operator error is greatly increased. To catch these

errors and be able to recover from them requires

maintainence of a global directory.

The global directory will contain information on the

contents of eath of the sub-directories. When a file needs

to be opened, the global directory will indicate which

* S. physical disk must be present. A check can then be made to

verify its availability, and prompt the operator if a disk

switch is necessary.

In addition to identifying which disk the operator was

supposed to insert, the system will be able to tell what

disk actually was inserted. Each separate disk will contain

an identification file. The disk management routines will

ensure that the global directory is kept current to avoid

inconsistencies.

Basic file maintainence routines will include creation

and deletion of files, and adding and deleting records from

files. The files will be composed of fixed length records

that may be linked togetner in a list. Access to files may

be either direct (by physical record numer) or indirect

using the list structure). This will allow variable length

111-18

7-

[[i-?"'"' and cnanging data structures for support of the project

°' files and the component and board data.

p..

V.

A

4

-.. ,

a'

-I..

V s :*'.is ' ----. :-....'-

Chapter IV

pDetailed Design

This chapter will describe in further detail the design

of the command processor and the text, graphics, and file

management routines. The routines form the core of the user

interface and were designed to ease implementation of the

other modules. The command processor uses the text and file

management routines; they will be discussed first, followed

oy a description of the required grapnics routines.

Notation

Different typestyles are used in figures IV-I.0 through

-3.15 to identify items as follows:

Lower-case boldface is used for variable names

i Upper-case BOLDFACE is used for File names

Text I/O Routines

Quer, Modules

The query modules are responsible for obtaining all

information from the user that requires numeric or string

responses. The Help module is invoked if the user enters a

question mark (1'?') at any prompt. Editing functions include

insertion, deletion. See figures IV-1.0 to -1.4 for more

details.

Querynum - Accepts numeric responses
Checks for range
Converts answer to default units

Querystr - Accepts textual responses
Checks for length
Converts answer to upper or lower case

QueryY/N - Accepts Yes or No answers

IV-1

"V* *- *...*.4-

F. 7 6 - 7

: Module Name: Querynum Level: 1

Called by: System Routine available to all modules

Calls: Getnumber

Function: The user will be asked for a numeric answer to a
question. The result will be converted to the default units
and checked against the minimum and maximum values allowed.
If the user wants help, it will be available.

Entry Conditions: prompt = Question the user is being
asked, units = units (mils, inches, mm, none) from which
the answer will be converted, min and max are the limits on
a valid response, and help index = entry into HELP FILE.

Exit Conditions: answer will contain the response entered
by the user which has been converted to the default units
(mils or none). It will lie in the range min to max.

Pseudo Code:

Begin Querynum(prompt,units,min,max,answer,help index:
Repeat

Move cursor to querybox
Display prompt, blank space, units
Convert min and max to proper units
Display 'Range:', min ,' to ', max
Getnumber(answer , help request, unit change
If unit change is set

Then Case units of
none: do nothing
mils: units = inches

inches: units = mm
mm: units = mils

If help request is set
Then Help (help index

Convert answer to units
Check for range violation
If there is a range violation

Then Move cursor to errorbox
Display 'Response not within specified range'

Until no(help request or range violation or unit
change)
End.

Figure IV-1.0 Numerical Query Function

PV-2

• .* ."* ..-.........-.-- -:-..- '.-%-,, % ,-''!

Module Name: Getnumber Level: 2

..

Called by: Querynum
Cale

Function: The following characters will be accepted from the
terminal: the digits 0-9, a decimal point, and a comma.
Additionally, the following editing functions will be
recognized: Left and Right Arrows will move the cursor, -S
will insert a space at cursor, -D will delete the character
under the cursor, ? will ask for help, -U will request a

. change in units, and Return will terminate entry. When
"* Return is pressed, the string of digits will be converted

into a number. If a unit change was specified, the unit
change flag will be set.

Exit Conditions: answer will contain the numeric voiue of

the number string that was entered. help request will be
set if help was asked for. unit change will oe set if the
units were requested to be changed by the user.

Pseudo Code:

Begin Getnumber (answer, help request, unit change
Move cursor to end of prompt
Repeat

Get character from keyboard
%Case character of
''-9': Add character to string

Echo character
S.'- If point is set

Then do nothing
a.) Else set point

Echo '.
',' •Echo

-S: Insert space in string
-D: Delete space in string

leftarrow: If cursor at first character
Then do nothing
Else Move cursor left one character

rightarrow: If cursor at last character
Then do nothing
Else Move cursor right one character

return: Convert string to answer
' ?': Set help request

Until (character = return or '?' or U)
'. End.

Figure IV-1.1 Number Editing

*. **

Module Name: Querystr Level: 1

Called by: System Routine available to all modules

Calls: Getstring

Function: The user will be asked to enter a text answer in
response to a question. The answer will be converted to
uppercase or lowercase, or no conversion will be done. The
length will be checked against minimum and maximum allowed
lengths. If help is requested, it will be provided.

Entry Conditions: prompt is the question being asked, case
will indicate the type of case conversion to be done, min
and max will bound the length of the string, and help
index will point to the appropriate entry in the HELP
FILE.

Exit Conditions: answer will contain the validated ;oonse
from the user.

Pseudo Code:

Begin Querystr(prompt, case, min, max, answc:z, help
-- index)

Repeat
Move cursor to querybox
Display prompt, string of max underlines
Display 'Response must be between'

min 'and' max 'characters'
Getstring (answer, min, max, help request
If help request

Then Help (help index
Until no help request
Case case of

upper: Convert answer to UPPERCASE
lower: Convert answer to lowercase
none: do nothing

End.

Figure IV-l.2 String Query Function

IVi
~IV- 4

'-.

Module Name: Getstring Level: 2

Called by: Querystr

Function: Any printable ASCII character string will be
accepted from the terminal. The string will be checked for
length before control returns to the caller. Editing
functions will be provided, and help will be requested if
desired by the user.

Entry Conditions: min and max contain the bounds of the
length allowed for the string.

Exit Conditions: answer will contain the response entered
by the user and help request will be set if the user askedfor help.

JPseudo Code:

Begin Getstring
Move cursor to end of prompt
Repeat

Get character from terminal
.4 Case character of

S: If length of string = max
Tnen do nothing
Else Insert space into string

-D: If length of string = 0
.Then do nothing

Else Delete character from string
leftarrow: If cursor at left end

4 Then do nothing
Else move cursor left one character

rightarrow: If cursor at right end
Then do nothing
Else move cursor right one character

return: If length of string < min
Then character = null
Else answer = string

'?': Set help request
Printable char: Add character to string
Anything else: character = null

Until character = return or '?'
End.

Figure IV-l.3 String Editing

IV-5

Af A -A:J4

,

"-! ,.v Module Name: Queryy/n Level: 1

Called by: System Routine available to all modules

Calls: Getstring

Function: A yes or no response is requested from the user.
Anything that starts with a 'y' will be a yes, anything that
starts with an 'n' will be a no, and anything else will not
be accepted. Help will be available if required.

Entry Conditions: prompt = question being asked and help
index = pointer to help message in HELP FILE.

Exit Conditions: answer will be Yes or No

Pseudo Code:

Begiii Yesno (prompt, answer, help index
Repeat

Move cursor to Querybox
Display prompt
Display 'Please respond with Yes or No'
Getstring (string, 1, 3, help request
If help request is set

Then Help (help index
character = First character of string
Case character of

'Y','y': answer = Yes
'N','n': answer = No

Anything else: answer = I dunno
Until answer = Yes or No and no help request

End.

Figure IV-1.4 Boolean Query Function
a°

* .,,."V

IV-6

.

Menu System

The function Menu reads a structured menu from the MENU

FILE and asks the user to make a selection. A global

variable identifies the menu which is currently in memory.

If the menu to be displayed is the same one already in

memory, then it won't be read in again from the disk. If a

different menu is requested, then the old one will be

disposed of and replaced with the requested one. See figures

IV-2.0 and IV-2.1 for more information.

In addition to fixed format menus stored in the MENU

FILE, the menu manipulation routines may also be used with

.' variable information, such as the list of the names of the

-' current users' projects. The three procedures Init List,

Build List, and Select List are provided to allow the

programs to dynamically create menus.

Regardless of the method used to generate the menu or

list, the appearance to the user is the same. Each of the

choices is listed on the screen, with a moveable cursor to

the left. The up and down arrows are used to position the

cursor next to the item of interest. Pressing RETURN will

select the item, and pressing ? will provide any available

help for the item.

IV-7

The format of the menu (in memory) is as follows:

Item Text :what the user sees on the screen.
Item Code :value returned if this item is selected.
Help Index :Help message index into HELP file.
Next Item :pointer to the next item of the menu.
Previous Item :pointer to the previous menu item.
Next Level :pointer to another menu. If this is not

nil and this item is selected, the next
level menu will be displayed.

Text I/O Screen Organization

The modules Query and Menu refer to three separate

areas of the display: the Querybox, the Menubox, and the

Helpbox. These areas may not overlap on the screen. If the

cursor is moved to the Helpbox, for example, then whaever

is already there will be erased. After the help mess&- ;,

been displayed, then the box will be left empty.

Tc allow for various terminal screen sizes, the T _ j

module contains all information regarding the locat-*.' :,

size of tne various screen areas. A function, Get --:nt,

returns the number of lines that have been allocated t3 each

area. Cursor positioning is also performed relative the

origin of one of the screen areas.

V.1

1

i IV-8

,. (* - :,,.,o,-., ,- . .-.. ,---: -_....., ,.,. -* . * .-.. *.--....-. .,-.,. .-.-... -.-..,,, -.. .;. -

. Module Name: Menu Level: 1

Called by: System Routine available to all modules

Calls: Display Menu, Select Menu Itemb.

Function: A menu of choices will be displayed that will fit
on the display all at once. A cursor will be moved by the
user until the item to be selected is next to the cursor.
Return is pressed to make the selection. To allow for large
menus, an item may have sub selections. When one of these
items is selected, the next level of menu will be displayed.
Control will not return to the caller until a terminal menu
item is selected. Help will be provided if necessary.

Entry Conditions: menu index will point to the location
within the MENU FILE which defines the menu structure. The
global variable current menu contains the menu index of
the last menu displayed.

Exit Conditions: selection will contain the code for -. ,e
selected terminal menu item.

Pseudo Code:

Begin Menu (menu #, selection
If current menu <> menu #

Then Erase old menu from memory
Transfer menu from MENU FILE into memory
current menu = menu #
menu index = First menu item

Menu Display (menu index, selection
End.

- Begin Menu Display (menu index, selection
Move cursor to Menubox
index = menu index
Repeat

Display index.selection text
index = index.next item

Until index = nil
Move cursor to first line of menu
Select Menu Item

End.

[.:-'.. Figure IV-2.0 Menu Driver Routine

-4
'4

• " '! I qa . %.-*p% ,%° °% ' . .,° *.'-. *- v '. '%' %. '-.'.*. .* ' '-. ' ' - ' ,. '

p."

Module Name: Select Menu Item Level: 2

Called by: Menu Display

Calls: Menu Display (recursive call for nested menus)

Function: From the items displayed, the user will select
one. If the choice points to more choices, then Menu Display
will be called recursively until a terminal item is
selected.

Entry Conditions: menu index is a pointer to the dynamic
list which contains the information about the current menu
choices.

Exit Conditions: selection will contain the code of the

selected terminal node.

Pseudo Code:

__ Begin Select Menu Item
index = menu index
Repeat

Get character from terminal
Case character of

uparrow: If index.previous item = nil
Then do nothing
Else move cursor up one line

index = index.previous item
downarrow: If index.next item = nil

Then do nothing
Else move cursor down one line

index = index.next item
'?': Help (help index)

Move cursor back to line
return: If index.next level = nil

Then selection = index.item code
Else Display Menu (index.next level,

selection)
If selection none of the choices

Then character = null
escape: selection = none of the choices

Until (character = return or escape
End.

.".*. Figure IV-2.1 Menu Selection Function

.IV-1

• . ,

File Management System

Basic File Access - The LinkFile Module

Both sequential ana random access files will be

required to fully support the layout modules. For stable

files, such as the Help and Menu files, purely sequential

access is adequate. Other files are dynamic in content, but

will still be accessed sequentially most of the time. To

allow for ease of sequential list management, a linked-list

file format is used. Each linked file has an index field

which forms a doubly-linked circular list of allocated

records. All records not belonging to the allocated list

are collected in another list called the Free list.

Pointers to the head of each list are maintained external to

the file in the global directory. Direct access to any

record is possible, but care must be taken to avoid

accessing unallocated records. Appendix A contains a Lull

description of the basic file format.

A global array called Files maintains all the

information required to access any file, including the

linked list pointers. The current implementation provides

slots for ten files. All files are assigned a slot number,

and all file activity is referenced to a particular slot. To

keep file buffer overhead down, only two files may be

silmultaneously open, but the actual assignment of a file

slot to a buffer is automatic and transparent to the user.

iIV-11
% '.' -. .€ . ' . . ". ""-".'.". ."-•. . -• -. , -. .. ., ' . v .

The following procedures and functions provide full

support for both sequential and random access to a file:

InitF: Initialize a slot in the Files array - All

information necessary to access the file must be provided,

including the physical location of the file and the access

mode. Files may be initialized as either linked or

unlinked.

ResetF: Set the pointers to access the first record of

the file - for linked files, this will be the head of the

list, and for unlinked files, the first physical record.

StateF: Return the current values of the pointers

RoomFt Return the number of unallocated record .

available

ReadF: Read the next sequential logical record, an,

update pointers. Successive calls to ReadF will

sequentially access all the records in the file. If the file

is linked, the link field will determine the order of'9

access. Unlinked files are accessed in physical recordl

number order.

WriteF: If the file is linked, Re-write the last record

accessed. The pointers are not changed, so successive calls

K to WriteF will result in the same record being accessed. If

the file is not linked, then successive calls will access

sequential records.

InsertF: Insert a new record into the file after the

current record. This procedure returns the actual record

. number assigned to the record, so that "t may be accessed

I V-i12

,--.-* *.- - . -** + - . . - .-. - , - - - . . - . , • . -- ." .- ,,,...., ; + .~ ;, ., *-, ,,..-. - ., .+ . .. , ,.i.s,., l . ;,.~9. ,,s .. , % "N . V / .-.
, .__. . -

7.1. -7 " ' 1

directly later. Because of the linked list structure, the

physical position of any record will not change once it is

created, regardless of the number of insertions or

deletions. This is only valid for linked files.

DeleteF: Delete the current record from the list and

return it to the free list. Care must be taken when deleting

records that are pointed to by other files. This also is

only valid for linked files.

CreateF: This procedure makes a new index for a file,

S: and assigns all of the records to the free list. None of

the actual file records are altered, but they become

essentially in.accessable.

PosF: Position the pointers to any desired record.

Care must be tken to avoid accessing records that are part

of the free list, if the file is linked. To avoid problems,

the record number returned by the InsertF procedure should

be saved if random access is desired. This may then be

safely used to position the pointers, provided the recora

has not been deleted.

Global Directory

-' The global directory keeps track of all files that the

printed circuit board layout system knows about. Although

simple in structure, it maintains enough information to

locate any file. Internal filenumbers used by the layout

modules must oe paired up with actual systea, filenames

before they can be accessed. The layout modules will only be

working with one project at a time, so each internal

*• 4

6IV-13
I ° 1

.,*.. * .. **.. -

" - .".

-."... filename may refer to many different physical files, one for

each project. Here is the structure of a global directory

entry:

Module I.D.: Indicates the modules which may refer to

this file. Implemented as a boolean array indexed by module

name, with a TRUE value if the corresponding module may

access the file. Any combination of the flags is ok,

meaning that more than one module may refer to a particular

file.
4.

File Num: The basic file management system maintains an

array of 10 file slots. This field is the slot number the

file will use when it is active.

Project I.D.: The unique reference number assigned to

the project to which the file belongs. Two special cases are

also represented here - a zero value indicates access to the

file is independent of the current project, such as a HELP

or MENU file. A value of -1 is used for those files not

accessed by any project, or to indicate a template entry

(see explanation of template entries in Appendix B).

How Many: The number of logical records that have been

allocated to this file. When a file is created, this field

is used to determine how much disk space is required for the

file.

Linked: A boolean flag indicating whetner or not the

file is linked.

IV-14

-o., .- A * _ pj. -_ * , .-; .' *_ . , -.. .. . ,) ; . , . .7 *. -'.i -

File Name: A character array containing the system

dependent file name used by the operating system to access

the file.

Drive: The disk drive into which the diskette

containing the file must be inserted. If incompatible disk

drives or formats are being used simultaneously, this will

prevent the system from prompting for a diskette to be

inserted into the wrong drive.

Disk I.D.: The unique reference number assigned to the

diskette on which the file resides. This number will be

written on the diskette label and recorded on the diskette

itself in the identification file described below.

Rec Len: The logical record length is maintained in

this field. The current CP/M implementation requires that

this be less than or equal 128 bytes. Because random access

files are not part of the Pascal standard, this restriction

ensures maximum compatability between different compilers.

Recs Avail: This field indicates how much room is left

in the file. The value may range from zero, indicating a

full file, to How Many, indicating an empty file.

First: The record number of the first logical file

entry. All linked files are maintained as a linked list of

records, and this field points to the head of the list. A

value of -1 indicates an empty file.

Free: The record number of the next unallocated record.

The total number of allocated and unallocated records will

always equal How Many.

IV-15

*• *", * % ° % , • - 4 . •- .. .•- •

* . The last seven f ields are used to initialize a

particular file slot, as described in Appendix A.

* .~ DiskID Module

-. * Each diskette will contain a small identification file,

which will uniquely identify it with a diskid number. This

number will also be written on the label of the diskette so

the user will be able to identify it. The global directory

will keep track of all files on each disk and the user will

be prompted whenever a diskette switch is necessary. The

b'.

following procedures have been implemented to oversee the

disk switching operations:

Whichdisk: A function that returns the number of the

disk currently mounted on the indicated drive. If the disk

.. °

I) is not labelled (i.e., is not one of the layout system

disks) then a value of zero is returned.

Switchdisk: The user will be prompted to switch disks

if necessary, after any open files on the current disk have

been closed. A check will be made to ensure that the user

inserted the proper disk.

NewDisk: A currently unlabelled disk is labelled, and

the user is told to physically identify the disk on the

label. This disk id number is the only way the system will

prompt for disks, so it is important for the number to be

recorded correctly!

-,1

Si no lael d (ie. is no on of......ut. yte

• ?Argument Module

To provide for communication between the Command

Processor and the other layout modules, the ARGUMENT FILE

contains any necessary parameters. When control is

transferred to another module, the information from the

global directory concerning the files required for the

current project and module to be executed is loaded into the

ARGUMENT FILE. Conversely, when the Command Processor

regains control, it loads the contents of the ARGUMENT FILE

to update the global directory and state of the current

project. The following procedures have been implemented to

support these activities:

Read Args: Load the current state of the system as

determined by the contents of the ARGUMENT FILE header, and

update the global directory for each file entry. (See

Appendix B for a description of the ARGUMENT FILE

structure.)

Update Header: Save the current state of the system in

the ARGUMENT FILE header.

Load Args: Look up all the files required by the next

module in the global directory and copy the information to

the ARGUMENT FILE.

* LoadFile Module

The complimentary routines to the Argument Module are

contained in the LoadFi]e Module. These two routines will be

the first and last statements of every subordinate module,
" "completing the parameter passing loop.

IV-17

111 Z- Izt"& 1

-7V

Initialize: Reads the system state and parameters

passed from the Command Processor. All other system module

initialization is also performed here.

Return: Updates the ARGUMENT FILE and returns control

to the Command Processor.

Command Processor

The next section details the design of the command

processor. Each main portion of the design is preceded with

a chart showing the modules to be described with a double

line box around it, and the others have single line boxes.

-PON%

I 1

ov

*t. . .-.-.. .-. -- .. :-. -. ..-... .-. ,-_-..- - -. . -. - .,,. . . -,, , - . L

ne M ee i,, II

I
' -

, . - - - .. ' .. -. . - . - .

i' I Error• ,=,. . ,,.,.' ' Op t ion N./ext

p.."..

LModule

;I'-.-:

Figure IV-3O command Procedure Routines

,,.:

FIV-19

p.Y

N Module Name: Command Processor Level: 0

.Called by: Initial Entry to System or upon return from
Selecter, Connecter, Placer, Router

Executes: Selecter, Connecter, Placer, Router

Calls: Determine User Identity, Select Option, Resolve
error, Execute next module

Function: Controls the Entire PBC design process. Directs
the execution of the major layout modules and is the primary
interface with the operator.

Entry Conditions: The ARGUMENT file contains information

about the current project.

Exit Conditions: After determining what to do next, the
ARGUMENT file will be updatcd and the next major module
will be executed.

Pseudo Code:

S. Begin Command Processor
Look at ARGUMENT file
Repeat

If error
Then Resolve Error

If current project is Null and no error
Then Determine User Identity

If valid user no error
Then Select Option

If no error
. Then Execute Next Module

Until no error
End.

Figure IV-3.1 Command Processor Main Routine

1

~IV- 20

I.o i

crrn 3F. ° c. . ' r...~ '

R i,]ve L et.ermino Execute
... I ._ .._ Eox ue

Error User '-n t0e i 1dty[, lodule

Figure IV-3.2 Resolve Error Modules

IV-21

1 z ". ,

Module Name: Resolve Error Level: 1

Called by: Command Processor

Function: Errors that occur during the execution of the
other Layout modules (Selecter, Connecter, Placer,Router)
may require handling help from the Command Processor. If
so, the error condition is communicated through the error
parameter in the ARGUMENT file. The appropriate corrective
action is initiated, and the ARGUMENT file is updated.

Entry Conditions: error indicates the cause of the error.
.

Exit Conditions: Action appropriate to the error will have
been completed, and the ARGUMENT file will reflect the
changes, if any.

Pseudo Code:

Begin Resolve Error
Case error of:

Error code - Error routine

If error is external
Then Reset error in ARGUMENT f1ie

End.

Figure IV-3.3 Error Handler

IV-22

:' .,.-"" ' -.. ".-...-.

" i O~~ommandPoesr,

J

i -rmin

"i° ISE^r'rr Userz.,- opt 61 ce:.'.
{ ~~Identity !I'. ..;

Create er I t'.New I dentl t,'v ,
UseJ&r , ..

Figure IV-3.4 Determine User Identity Modules

IV-23

'* ,*.-.'... . S ** ~ ,E ... ~. .~

' --.. Module Name: Determine User Identity Level: 1

Called by: Command Processor

Calls: Create New User, Verify Identity

Function: Asks the user to identify himself. The name is
then looked up in the LIST OF USERS. Unknown users will be
asked if they wish to be added to the system.

Entry Conditions: Comwand Processor has been entered for the
first time and needs to know wno the user is. No arguments
are passed.

Exit Conditions: valid user is set if the user is valid.
current user will identify who the user is.

Pseudo Code:

Begin Determine User Identity
Repeat

*: name = Query"Who are You?"
Look up name in LIST OF USERS
If name is not found

Then typo = Query"Did you enelu
your name correctly?"

Until no typo
If name is not found

" ., Then Create New User
Else Verify Identity

End.

Figure IV-3.5 Determine User Identity

il-2

~IV-24

M . Nodule Name: Create New User Level: 2

Called by: Determine User Identity

. .-. Function: A new user ID and password will be assigned to
the name and entered into the LIST OF USERS.

Entry Conditions: name is to be added to the system.

Exit Conditions: valid user will be set if the operator
really did get added to the system. current user will
contain the user ID assigned to name.

Pseudo Code:

Begin Create New User
add = Query"Do you wish to be added as a new user?"
If add is set

Then Assign new user ID to name
protect = Query"Do you want a .a-"word?"
If protect is set

Then password = Query" What v.. . your
password De?"

Else password = Null
Add user ID, name, password to LIST OF USERS
Set valid user
current user = user ID

Else Reset valid user
current user = Null

End.

Figure IV-3.6 Create a New User

? .i :

"4

~IV-25

-.. Module Name: Verify Identity Level: 2

Called by: Determine User Identity

Function: A user has entered a name that is present in the
LIST OF USERS. If he knows the password, then he will be
allowed acces to his projects.

Entry Conditions: name of unvalidated user must be
validated

Exit Conditions: valid user is set if the operator can
prove who he is by typing the correct password. If he
doesn't know it, he will not be allowed to do anything else.

Pseudo Code:

Begin Verify User
Look up password of name in LIST OF USERS
If password = Null

Then Set valid user
current user = user ID

Else proof = Query"Prove it!"
If proof = password

Then Set valid user
current user = user ID

Else Reset valid user
current user = Null

End.

Figure IV-3.7 Verify User Identity

'V

'4"

IV-2

4.- - - , ' , . - -'_% - -- , , -. o - . " , ' - , . - % -" , " , -% ", , "o "% °

Com an Pl-* *.:-s

4-.-.Ut

FiueI'.8Slc pto oue

.5-S.27

. .

Module Name: Select Option Level: 1

Called by: Command Processor

Calls: Determine Module to Execute, Select Project, Create
Project, Kill Project

Function: The user may either continue to work on the same
project from start to finish, or may complete various
projects one step at a time. After each major module is
completed, the current project can be put aside and a new
project can be selected, or the same project can be
completed still further, or the user can quit for now and
exit the program.

Entry Conditions: valid user is set and current user
contains the user ID of the current user. The ARGUMENT
file contains information about the current state of the
current project.

Exit Conditions: The ARGUMENT file will have been u. ted
to reflect the new (if any current project. next moodile
will indi.cate which module is to be executed next.

.

S.Pseudo Code:
Begin Select Option

Update LIST OF PROJECTS from ARGUMENT file
next module = Null
Repeat

Display Menu:
* Continue with current project
* Switch to another project
" Create a new project
" Discard current project
" Exit to operating system

Get choice

Case choice of:
Continue - Determine Module to Execute
Switch - Select Project
Create - Create Project
Discard - Kill Project
Exit - next module = Operating System

current project = Null
Until next module isn't Null

Update ARGUMENT file from LIST OF PROJECTS,.'L End.

Figure IV-3.9 Main Menu Options
.IV-28

* , o ,..-.., _,

r..,
!:- .b

Module Name: Determine Module to Execute Level: 2

. Called by: Select Option

Function: The state of completion of the current project
indicates what has been completed so far. Previously
completed steps may be retried with different parameters, or
the next step may be selected. In any case, no module may
be executed until the state of completion indicates that
all required previous steps have been completed.

Entry Conditions: current project indicates which project
is under consideration. The LIST OF PROJECTS contains the
state of completion.

Exit Conditions: next module will identify which module is
to be executed next for this project.

Pseudo Code:
Begin Determine Module to Execute

Look up state of completion of current project
in LIST OF PROJECTS

Case state of completion of:
Select Board - highest module = Selecter
Select Components - highest module = Selecter
Selection Complete - highest module = Connecter
Specify Components - highest module = Connecter
Connections Complete - highest module = Placer
Place Components - highest module = Placer
Placement Complete - highest module = Router
Route Connections - highest module = Router
Routing Complete - highest module = Router

Display Menu from Selecter to highest module
* Selecter

.. * Connecter

*... * Placer
* Router

Repeat
-/ Get choice

If choice < highest module
Then proceed = Query "You sure you want

to Redo this?"
Until proceed = OK
next module = choice

End.

I .Figure IV-3.10 Module Selection Menu

IV-29

Module Name: Select Project Level: 2
..7

Called by: Select Option

Function: Tne user is asked to cnoose from among his current
projects. current project may also ne left as is, if a
mistake was made. If no projects are assigned to the
current user, then current project is set to Null.

Entry Conditions: current user identifies whose projects to
look for in LIST OF PROJECTS.

Exit Conditions: current project identifies the new
current project.

Pseudo Code:

Begin Select Project
Look for current user = user ID in LIST OF PROJECTS
For each match:

Display Menu item project name
If no match

Then current project = Null
Else Get choice

switch = Query"Confirm switch from"
current project "to" choice

If switch is set
Then current project = choice

End.

Figure IV-3.11 Project Selection

'A.

-V.,

.-.

IV-30

4tW . ..E~\f .:o. * *., -"'-""

b%

Module Name: Create New Project Level: 2

Called by: Select Option

Function: A new entry in LIST OF PROJECTS will be created.
The user will be asked to name the project and give a short
description to aid in future identification. An entry in
the GLOBAL DIRECTORY will be allocated for the PROJECT
file. The new project will become the current project.

Entry Conditions: current user is to be assigned a new
project.

Exit Conditions: Newly created project will be the current
project.

Pseudo Code:

Begin Create New Project
project name = Query"What do you want to call it?"
project description = Query"Briefly describe it."

0 Assign new project ID to project
state of completion = Select Board
user ID = current user
Add project ID, user ID, project name,

project description, state of completion to LIST OF
PROJECTS

Allocate disk space for PROJECT file in GLOBAL
DIRECTORY
End.

J% Figure IV-3.12 New Project Creation

i

. . IV-31

-- 77.

Module Name: Kill Project Level: 2

Called by: Select Option

Function: The user wishes to delete the current project
from the LIST OF PROJECTS. After confirming this, the
PROJECT file for the current projectis deleted from the
GLOBAL DIRECTORY and the disk space is de-allocated

Entry Conditions: current project is to be deleted

Exit Conditions: If confirmed, LIST OF PROJECTS and GLOBAL
DIRECTORY will no longer contain information about the old
project, and current project will be set to Null.

Pseudo Code:

Begin Kill Project
If current project <> Null

Then proceed = Query"Confirm deletion of"
current project

If proceed is set
Then Remove current project from

LIST OF PROJECTS
Remove PROJECT file of current project

from GLOBAL DIRECTORY
De-allocate dis.k space
current project = Null

End.

Figure IV-3.13 Project Deletion

'V3 r IV-32

-.m

Es,

-3

Fesol1 e Deterri Ino Se .1 i Execute
Error- User Opt,, N. : ,e:t.

Ident tvy I;M d

Figure IV-3.14 Execute Next Module

IV- 33

' ;,V,, ',,',. ,,-U".- ' ' . a'' , ''' :'" ~ ': .'-- "-..-.',- ,.. "- -. ...

Module Name: Execute Next Module Level: 1

Called by: Command Processor

Executes: Selecter, Connecter, Placer, Router, Exits to
Operating System

Function: The Layout modules cannot be simply called like a
normal procedure, because they are not resident in memory at

•. -, the same time with the Command Processor. In operation, the
Command Processor chains to the next module which in turn
chains back to the Command processor. Communication is
through disk files. Before execution is attempted, the
files required by the next module are looked up in the
GLOBAL DIRECTORY. Their locations are loaded into the
ARGUMENT file, and control is transferred to the next
module.

Entry Conditions: next module identifies which module is to
be executed. GLOBAL DIRECTORY contains information about

*which files the modules need to execute -operly.

Exit Conditions: This is a "dead-end" routine because it
does not return control to the cal ler. It is the
responsibility of the module that is executed to return
control to the Command Processor with the ARGUMENT file
updated.

Pseudo Code:

Begin Execute Next Module
Look up required files for next module

in GLOBAL DIRECTORY
For each required file:

Add required file location to ARGUMENT file
Look up resident filename of next module

in GLOBAL DIRECTORY
Execute resident filename

End.

Figure IV-3.15 Module Chaining
I

~IV-34

*Graphics Routines

The following graphics routines have been implemented

in very basic form for testing purposes, and the design is

presented to satisfy the requirements for graphics

capability as indicated in the general design of the layout

modules in chapter III.

Basic Features

The basic graphics display routines are those required

for pixel manipulation and changing of the display window.

They will be very machine dependent, so the design of each

depends on the target machine. Here is a description of the

required routines and associated definitions:

pdux,pduy : Physical Display Units x r:cm2,zresent
the actual screen coordinaLez.- r the

jtarget machine.
plotcode : on = pixel will be turned :,n

off = pixel will be turned ft'
flip = pixel will be inverted
same = state of pixel will remain
unchanged

quadrant : NW, NE, SW, SE each represent one quarter
5.. of the logical display space. To allow

boards larger than the physical screen to
be displayed, the logical display space is
divided into four quadrants, only one of
which may be displayed at once.

Pixel Manipulation Routines

set scale (scale) : The system scale factor is a real

variable and may be set to any value desired. Once set, any

4. subsequent coordinates will be scaled accordingly. The

initial value is one.

set coord (x, y) : A coordinate in terms of mils is

,' , converted into the corresponding physical display

coordinates using tne current value of the system scale

IV-35

* 5.. . .~5 %s 5. 5.-. 5.'. .**.* *%*7.-. e.-.-..*.* Nr**

.[.- factor.

pixel (plotcode) : The pixel at the current location

(determined by set coord) will be modified according to the

value of plotcode.

pixelset : A boolean function that returns the state of

the pixel.

limits (quadrant, xmin, xmax, yrain, ymax A

procedure that returns the minimum and maximum x and y

values (in mils) that will be visible in the given quadrant.

Window Manipulation routines

window (quadrant): The quarter of the virtual display

screen specified by quadrant will be physically displayed.

Depending on the display hardware, the current screen may be

swapped out to disk.

text : The graphics screen will be replaced with the

text screen. The graphics will not be erased, but may be

swapped out to disk if necessary.

loadgraphics : The graphics display memory will be

loaded from the graphics dump file.

savegraphics : The graphics display memory will be

saved into the graphics dump file.

," cleargraphics : The graphics display memory will be

cleared completely.

Advanced Features

The following procedures will assume the basic features

are defined and available. They include line and box drawing

. routines, copy routines, and cursor movement control

IV-36

-1 T

routines. They will be implemented using standard Pascal and

W the basic graphics routines, but if the display hardware

supports some of these features, then these routines may be

re-written to take advantage of the extra capabilities.

The following definitions apply to these functions:

point : screen location in mils. The x and y
coordinates can be referred to

'.. individually as point.x and point.y. Note
that the graphics display logical screen
is four times larger than the physical
screen, so the point may not necessarily
be on the current physical display.

layer : 1..4 indicating which layer is neing
drawn on.

overlay : true = the existing points which are set
will be left alone when new points are
added.
false = any existing po'ints will be reset
before the new points ar added.

orientation : asis = don't ch.:i,-: celative
orientation
clockwise = rotated 90 degrees right
counter = rotated 90 degrees left
upsidedown = flipped upside down

Drawing commands

line (pointl, point2, plotcode, layer): A line will

be drawn on the display between points 1 and 2. All of the

pixels along the line will be affected according to the

value of plotcode. Each layer will be drawn with different

line styles (solid, dotted, dashed, e -c.) The current

quadrant will be switched if necessary.

drawbox (pointl, point2, plotcode): A box will be

drawn using points 1 and 2 as opposite corners. The box will

always be drawn using solid lines.

IV-37

S.C

* copy (pointi, point2, point3, overlay, orientation

The contents of the box defined by points 1 and 2 will be

copied to the box of the same size with point 3 as the lower

left corner. If overlay is true, then the current contents

of the destination box will not be erased before the source

box is added. Orientation will define how tne destination

box will be oriented with respect to the source box.

move (pointl, point2, point3, overlay, orientation):

Same as copy except that the source box will be reset.

draw (symbol, point, orientation): The symbol

definition will be looked up in the SYMBOL FILE and will be

transferred to The display with point as the lower left

corner. The orientation will be changed accordingly.

size (symbol, dx, dy): The size of the symbol will be

returned in dx and dy.

v1 defsymbol (symbol, pointl, point2): The box defined

by points 1 and 2 will be added to the SYMBOL FILE with the

label symbol.

Cursor Motion

getcoor (pointl, point2, point3) A cursor will

appear on the screen at the center of the box defined by

points 1 and 2. The user will be able to move the cursor

around the screen within the box until he presse. RETURN.

The current cursor location will then be returned as point

3. The cursor will be non-destructive and the user will be

able to define the resolution of cursor motion dynamically.

IV-38

.. '

Chapter V

Implementation

Two different micro-computers were used to develop the

software for this project. They use different operating

systems and different Pascal compilers, providing a good

portability test.

One of the computers is an LNW-80, which is compatible

with the Radio Shack TRS-80 Model I computer. It has 48K

bytes of RAM and four floppy disk drives with a total

storage space of over 1 Megabyte. The graphics display is

480 pixels horizontally and 192 pixels vertically within a

display space of 7.5 by 4.5 inches, which gives a wco..it case

resolution of 24 mils. This is adequate to repr& nta 50

mil grid in actual size. The operating system T Dospius

3.5, unique to TRS-80 computers and their equivalents

The other computer is an Epson QX-10. Although

equipped with 256K bytes of memory, only 64K is accessable

when using the CP/M operating system. The graphics display

is 640 X 400 pixels within an 8" X 5" screen, yielding a

resolution of 12.5 mils.

Simultaneous software development proved to be very

time-consuming because of the iterative nature.

Improvements and additions made to one version had to be

made to the other version as well, which made keeping track

of source code files a non-trivial task.

V-1
'I,

p

, .- The present implementation of the layout system is not

as complete as originally intended, due to unanticipated

problems with the Pascal file handling system and with

manipulation of the QX-10 graphics hardware. The available

documentation is not complete, and the other problems

slipped the schedule enough to make experimentation

impractical.

The next section explains the differences between the

two compilers used and will allow comparison of the source

code.

Pascal MT+ on Epson QX-10

Random Access Files

Standard Pascal only defines sequential access files,

and MT+ extends this definition to ai'ew for random access

through the use of two procedures - seekreiad and seekwrite.

" Standard Pascal procedures are used to open the file,

however. This leads to problems when all file accesses are

• -to be handled through a common set of procedures, because

the file record structure must be known at the time the file

is opened.

A generalized file access routine should not have to

know the actual record structure of tne file, just how many

bytes to transfer. The solution was to use a fixed-size

record for all file access, declared as an array of

characters. Procedures were then written to perform record

blocking and de-blocking within this maximum record. This

'-' requires the file routines to maintain the actual record

v-2

4 . .-. ; _. , .,.- .,, . . ._...,. ,., p, ;> - ; . ''- - -' ". . - * ' " *
-
--. ' . n r.:

. .- '
n.: .

-6

length for each file, so only the appropriate number of

bytes are transferred.

External Procedures and Variables

The two compilers have almost identical facilities for

handling external declarations, but the syntax is totally

different. As a result, none of the routines may be

compiled "as is" , but the changes between them are

mechanical in nature.

MT+ defines two keywords, MODULE and MODEND. to

differentiate between a program module and a set of

procedures being compiled separately. To allow procedures

and functions defined in one module to be accessed from

another, the procedure or function heading is preceded by

the keyword EXTERNAL if the definition exists in another
a.

module or program. Variables are handled similarly, with

-.i the EXTERNAL keyword preceding the type of the variable.

Static vs. Dynamic Variables

In standard Pascal, variables do not exist unless the

procedure in which they are defined is currently active. In

separately compiled modules, MT+ defines all variables

declared outside the procedures to be static, and they are

treated just like global variables defined in the main

program. This allows modules to declare varianles that will

not become undefined when the procedure using them finishes

4. executing.

V-3

-a-, • " ° ° •

,ID-A138 427 PRINTED CIRCUIT BOARD LAYOUT BY MICROCOMPUTER(U) AIR 2/3
FORCE INST OF TECH WRIGHT-PATTERSON RFB OH SCHOOL OF
ENGINEERING E W KRAUSMAN DEC 83 AFIT/GE/EE/83D-35

UNCLASSIFIED FG9/5 N

IIEIIEEEEEIIEl
EEEEEEEEEEEEEE
lflflflflflflflflfflfflf
IEEEEEEEEEEEI
ElElhEEEEllEEE
IIIIIIIIIIIIIIfllfll.

16 0 -. **-*'- ..- . *?.

.I

I

.

•1 1 .2 1 11[.4..

I I - 0 1

MICROCOPY RESOLUTION TEST CHART
NAT9WL BUREAU OF STANDARDS-1963-A

.'- .1 ...

%'

a ... ° •

,. -'..

(,,.'.
" -~. ' . ' .. * *. .* *... a.. .-. ,.

k;:: i-:_ L.X: . t.,..:.:,...,...,...... ,

An MT+ Module with Static variables has the following

format:

MODULE module name;
VAR static variable name : type;

variable declared elsewhere : EXTERNAL type;

References to procedures defined elsewhere follow 3
EXTERNAL procedure name(parameters);

[Procedures being compiled follow I

PROCEDURE procedure name(parameters;
VAR (all variables needed by the procedure 3
BEGIN
E Procedure body 3
END;

MODEND.

LNW (TRS-80 Model I compatable) and Alcor Pascal

Random Access Files

Unlike MT+, Al-cor defines separate procedures for

*opening and closing random access files, as well as reading

and writing them. The record length of the file is passed

as a parameter to the open subroutine, and the address of a

variable is passed to the random read and write routines.

This means that the file routines do not need to know the

structure of the file, and any record length can be used

with ease.

Separate Compilation

Alcor uses a compiler option to tell the compiler not

to generate code for the body of the program, called the

($NULLBODY] option. Basically, the entire program consists

of the statements BEGIN ($NULLBODY] END. instead of MODEND.
Vm

, dY as with MT+.

V-4

External Procedure Declarations

The only difference here is the position of the'keyword

EXTERNAL. Alcor Pascal places it after the procedure or

function heading, instead of before it.

Static Variables

Two new keywords, COMMON and ACCESS are used to do the

same thing that external variable declarations do in MT+.

COMMON is used instead of VAR to indicate that the varaibles

being defined are to be allocated statically, and the

keyword EXTERNAL is not used. In every procedure that uses

a COMMON variable, the variable must appear in an ACCESS

statement.

The format of an Alcor module is as follows:

PROGRAM program name;

C The COMMON statement is the same regardless of where
the variable is defined.)

COMMON static variable name : type;

C Procedures defined elsewhere go here 3
procedure name(parameters); EXTERNAL;

[procedure definitions being separately compiled go
here)

PROCEDURE procedure name(parameters);
ACCESS variable names declared as common;
VAR local variables : types;
BEGIN
(Body of procedure I
END;

BEGIN
($NULLBODY)
END.

'9

V-5

- -.

*. Appendix A explains the basic linked-list file format,

and Appendix B describes the file formats used by the

Command Processor Shell and the ARGUMENT FILE. To make

installation of the Command Processor easier, Appendix C

describes the Installation utilities that have been written.

The complete source code for the Command Processor

Shell is presented in two versions, one for each

computer-compiler pair, in Appendixes D and E.

Appendix F contains a users manual for the Command

Processor which explains the use of the Query, Menu, and

Help functions.

v-6

Chapter VI

Results

File Size Limitations

Because all of the information is stored in files,

project complexity will be limited by the amount of disk

space available. All of the files required by a particular

module should fit on line at the same time, to minimize the

amount of disk swapping required. The amount of data that

can be maintained for a project depends on the following

factors - the physical storage limitation of the disk

itself, and the amount of overhead required by the system.

File overhead refers to the amount of file space that

isn't available for storing actual data. For linked files,

the overhead imposed is four bytes per record, independent

of the record length. Longer records will have less

overhead on a percentage basis than short records. For

example, an eight byte record will consist of four bytes of

pointers and four bytes of data, with a resultant overhead

figure of 1/2. A 128 byte record will have the same four

pointer bytes with 124 bytes of data. The overhead in this

case, 1/32, is much lower.

Most of the layout module record lengths will probably

lie between these two extremes. A 16 byte record could be

used to store circuit trace information, of which 12 bytes

would be available for data. Allowing for 2,000 traces per

layer on a four layer board woula require 8,000 16 byte

.: records, or 128,000 bytes.

VI-i

.1i

As long as all of the records in a file contain the

same type of information, calculation of file overhead is

simple. Problems arise when variable length records are

stored in one file, because the longest record length is

used for each record. The unused bytes at the end of each

-.j shorter record must be added to the total overhead. Any

bytes used to distinguish between the types of records in

the file also add to the overhead. The total overhead figure

* will include the fixed four bytes per record, plus an amount

depending on the mix of each of the logical record lengths.

Improvements to Existing Code

The current Command Processor shell does work

correctly, but there is a feature that should be improved to

provide a better user environment. When the user is asked a

question, there is no provision for an escape - A valid

answer must be provided before control returns to the

caller. On-line help is available, but if the user is

totally confused, or realizes that he answered the last

question wrong, there is no way the indicate to the calling

program an exception condition.

,* Proposed solution - the query modules should include an

additional parameter to indicate that the user didn't desire

to answer the question. This would allow the calling

*program to detect the exception condition and provide a way

for the user to gracefully "bacx up" through a series of

questions.

VI-2

Future Developments

Because of the unforseen level of difficulty in writing

truly portable Pascal programs, it was probably not the best

choice for a project of this type. C appears to be a much

more suitable language and conversion from Pascal to C

should not be difficult for an experienced C programmer.

When this project was started, I was unfamiliar with C and

thought that it would take too much time to obtain and learn

it.

The basic design is sound and I will be continuing to

work on this project even though the formal thesis work may

be completed. It will take quite a lot of work to fully

implement the system, but the results should be worthwhile.

-VI-3

Bibliography

1. Calafiore and Foster, A System for Multilayer Printed
Wiring Layout,Proc. llth Design Automation Conference, 1974.

2. Brinsfield and Tarrant, Computer Aids for Multilayer
Printed Wiring Board Design, Proc. 11th Design Automation
Conference, 1974.

3. Patterson and Phillips, A Proven Operational CAD System
for P.W.B. Design, Proc. 12th Design Automation Conference,

.. 1975.

4. Nishioka, Kurimoto, and Nishida, A Minicomputerized
Automatic Layout System for Two-Layer Printed Wiring Boards,
Proc. 13th Design Automation Conference, 1976.

5. Pedro and Garcia, DOCIL: An Automatic System for Printed
Circuit Board (PCB) Designing, Proc. 14th Design Automation
Conference, 1977.

6. Matthews, A. J., A Human Engineered PCB Design System,
Proc. 14th Design Automation Conference, 1977.

7. Bayegen, H. M., An Integrated System for Interactive
Editing of Schematics, Logic Simulation and PCB Layout
Design, Proc. 15th Design Automation Conference, 1978.

8. Stevens, vanCleemput, Bennett, and Hupp, Implementation
of an Interactive Printed Circuit Design System, Proc 15th
Design Automation Conference, 1978.

9. Villers, P., A Minicomputer Based Interactive Graphics
System as used for Electronic Design and Automation, Proc.
15tn Design Automation Conference, 1978.

10. Johnson, D. R., PC Board Layout Techniques, Proc. 16th
Design Automation Conference, 1979.

11. Shiraishi, Ishii, Kurita, and Nagamine, ICAD/PCB:
Integrated Computer Aided Design System for Printed Circuit
Boards, Proc. 19th Design Automation Conference, 1982.

* ..

.4' :.. APPENDIX A - Linked File Format

All of the files maintained by the system have the same

basic format - a linked list of fixed length data records,

accompanied by another list of free records. When a file is

created, all of the records are linked together and assigned

to the Free list. Later insertions and deletions involve

transfering a record from one list to another. No actual

movement of the records in the file takes place.

P%4 For example, consider a file with five records

allocated. After initial creation, it would look like this:

FREE - FIF&',T > EMPTY

4 -or C-
** i,:--t

0 Record1

4,,
I aR.c......d 2

A-1

I' ._-_'_:_.___,,__(• '. ' , r , - -, -' -

.- "- ~ Notice that the free list is circular - the previous

record pointer of the first record points to the last

record, and the next record pointer of the last record

. points to the first record. The two pointers First and Free

point to the first record of their respective lists, and a

value of -1 for either pointer means there are no records in

the list. In the present example, First is pointing to an

empty list, because no records have been inserted yet. Here

is how the file would look after three insertions:

F FI R'':OT..

FIKT

:I. L _ I I
,1 1 Record.

2 0 1 ~ ~Rcrrdi I

-"-2

-2 '~~ UA-2

1

Because the lists are circular, detecting an End of

File condition becomes a little tricky. After a file has

been Reset, two pointers, Next and Last, are Doth set to

point to the record pointed to by First. The first Read

will look at the first record and set Next to point to the

next record. After four more Reads, Next will again be

pointing to First, but Last will not. This is how an End of

File is detected - whenever Next equals First and Next is

different from Last, then we've wrapped around back to the

top of the list. When there is only one record in the list,

however, this scheme doesn't work. A one record list always

points to itself, because it is both the next record and the

-last record as well as the first record. In this case, an

End of File will never be indicated. The solution is to

avoid single element lists.

Slots

The LinkFile module maintains ten slots for file

information. To access a file, a slot must be initialized

for it. The initialization defines the filename, diskid,

drive, and current pointer values for the file. Once

initialized, the system automatically opens and closes files

as necessary, and will prompt for disk switches when

necessary.

When a module finishes execution, the current values of

the poiiters must be saved somewhere so that the next module

,%v r tess them. The global directory maintains all

'V variable file slot information for the command processor,

A-3

* S

-"-'. and the argument file is used to pass this information

between modules. To ensure file integrity, the following

procedure is followed: Initialize all necessary file slots

by reading the information from a known source (either the

global directory or the argument file). When done with the

files, update the appropriate source to save the new state

of the files.

The actual information maintained for each slot is

system dependent, and can be found in the source code

listings in appendices D and E.

A-4

445 ¢..'. .. :2 :° "- .. -. ; 4 ;- % 4 -. ¢ . ; .. ' . ;.;.
. - ' , - ' ' . ' v . ' - ' , : .

.,.-''['-

APPENDIX B - Command Processor Files

The Command Processor uses six files to keep track of

the users, projects, and disk allocation, along with menus,

help, and communication with the other modules.

List of Users

Three pieces of information are retained for each user

- a name, password, and a user id. Upon initial entry to

the system, a match with one of the names already in the

list is attempted. If the match is successful, then the

user must also match the password, unless the password is

all blanks. Here is the format of the Users file:

Name : String containing UPPER CASE name of user
ID : positive integer greater than zero
Password : String containing password defined by user

List of Projects

Project information includes the project name, an

additional description, a progress indication, and the owner

of the project, all identified by a unique project ID.

ID : positive integer greater than zero
Name : String containing user defined name for

project
Desc : Optional description of project
Completion : Single byte integer representing the level

of completion
User : Single byte integer identifying the owner

of the project

List of Disks

As projects are created, diskette space is reserved in

advance for each project file. The list of disks keeps

track of current space available on each disk. Each project

is assigned a unique disk or disks, so no disk will contain

files from more than one project. When projects are

B-I

-. . - ---

2..
; _ -

. . ,.r ..P -r -J . .- 0 ' r ' . - o -.. ' '

.. deleted, the disk space is reclaimed for the owner of the

project. This ensures that physical disks always belong to

one owner, allowing each user to keep his own disks

separately.

Disk ID : An integer identifying the disk
Assigned : A flag indicating whether or not the disk

currently belong to a project, or is
available for re-assignment.

User or
Project ID : Depending on the Assigned flag, this field

identifies either the owner of an
un-assigned disk, or the project to which
the disk has been assigned.

Menus

The file of menus has a structure which allows a menu

to be represented as a linear list regardless of the number

of levels. All of the items belonging to one menu

sequentially follow each other. As each item is read from

the file, two flags, Bump Up and Bump Down, indicate whether

the next item is at a lower level, higher level, or the same

level. The end of a menu is indicated when the level

reaches zero.

Menu Number : Indicates which menu this record belongs
to

Bump Down : A flag indicating that the next record is
at a lower level

Bump Up : A flag indicating that the next record is
at a higher level

Item Text : The text displayed to the user on the
screen

Item Code : Code number for this selection
Help Index : Which help message to display for this

selection

%4 .

B-2

, ..

Help File

The help file is very simple in structure - each record

contains two fields: an index number, and a line of a help

message. When help is asked for, the file is scanned until

the first matching index number is found, then all

sequential records are displayed until a different index

number is found.

Help Index : Integer indicating to which message this
record belongs

Line : One line of the help message

Argument File

The argument file contains a header record with a

different format than the rest of the entries. The header

information keeps track of the current state of the system,

and the rest of the records contain information about each

file which is passed between the modules.

I

~B- 3

: .. 4

Here is the format of the header record:

Next ID : The next disk ID to assign
Next User : The next available user ID
Next Project : The next available project ID
Project ID : The ID of the current project
User ID : The ID of the current user

" . Error Code : Current error condition, if any
Completion : Number representing the state of the

current project
Module : Number representing the last module

executed

The file entry format is a subset of a global directory
entry:

File Num : Slot number occupied oy the file
File Name : System dependent file name
Linked : Flag indicating whether or not the

system will maintain the file as a
linked list

Drive : Drive on which to mount disk containing
the file

Disk ID : Identifier of disk containing the file
Recs Avail : The amount of free space left in the

___file

Rec Len : Logical record length of the file
First : Pointer to the first logical record
Free : Pointer to the free list

B-4

%w'7

APPENDIX C - Installation

In order for the Command Processor to work, four files

must be initialized - the global directory, the menu file,

the help file, and the argument file header. Because these

files use Pascal structures, programs were written to read

in conventional ASCII files and convert them to the format

required by the Command Processor. Described below is the

format of the ASCII files required by each of the programs.

GDIRGEN - Generate the Global Directory

GDIRGEN reads a file called GDIRGEN.DAT and creates a

new directory entry for each line in the file. Each line has

fourteen fields with the following format:

Field Name Field Length Contents
CP 1 T or F
Selecter 1 T or F
Connecter 1 T or F
Placer 1 T or F
Router 1 T or F
OS 1 T or F
Separator 1 Anything
Linked 1 T or F
Separator 1 Anything
File Name 12 System File Name
Separator 1 Anything
Drive 1 Drive Identifier
Sepatator 1 Anything
Slot Number variable 1 to 10
Project ID variable 0 or -1
How Many variable Number of Records
Disk ID variable 0 or 1
Record Length variable 1 to 128

The first six fields are flags indicating if the file

will be accessed by tne corresponding module, ana the

variable length fields are all numeric values separated by

spaces.

C-i

.1'
€ .\ ~'--sv.~-..

S.

Project ID and Disk ID are set to -1 and 0,

respectively, to create a template entry. Template entries

do not correspond to actual files, but are used when new

project files are created. The global directory is searched

for these template entries, and a corresponding real file

and entry is generated, with the Project ID and Disk ID

fields set to actual values.

MENUGEN - Generate the Menu File

The contents of MENUGEN.DAT are used to initialize the

system menu file. Each line corresponds to a single menu

item or a new menu number. The first cnaracter of a menu

item is used to control the nesting level - a V will go down

one level, and a will go up one level. When the level

reaches zero, the menu is complete, and the next line should

contain another menu number or a zero to indicate the end of

the file.

Field Name Field Length Contents
Level 1 or V or space
Separator 1 Anything
Item Text 20 Displayed Text
Separator 1 Anything
Item Code variable 0 to 255
Help Index variable Help Message Number

HELPGEN - Generate the Help File

The contents of HELPGEN.DAT are used to create the

system help file. Each line corresponds to one line of a

help message. Help messages may be an arbitrary number of

lines long.

C-2

, ": ++ +,: +.i,,, ., ,'5% + -"+ - 9+ ?'I '-~ ..- v +¢.

W -i Plri~ 7-3b 77,97- 7b

Field Name Field Length Contents
Help Line 30 A line of the message
Separator 1 Anything
Help Index variable Help Message Number

ARGSGEN - Initialize the Argument File

The Command Processor reads the Argument file every

time is entered to determine the current state of the

system. This program initializes the Argument File header

so the Command Processor won't bomb out the very first time

it is executed. No input data file is used.

-c-

I

S.

! 51

'"',r' ; "' " " 4" 4" ' " W" " "" ''. ' ""-' "' " " '' """ ":'" '"""""" ' " "'" """"""
'.. 5 ,. °' ' '' t' _ , . , , - , , , , - .. ,...-. .

%' 9 APPENDIX D - GXII Source Code

.* TermIO Module - Terminal IiO support routines *1

{* All of the routines use one byte control codes for the 4;
-* various screen operations and expect one byte responses *}

o* mr the keyboard. These control bytes must be translated *.
{* into the actual control sequences for the terminal being *}
{* used.

I~ { *********************** *************************************)*

module termio;
const qx = 18; (Define Screen Areas)

q_y = 28; (Query Box }
q_lines = 3;
m-x = 5; (Menu Box I
m-y = 1;
in lines =20;

-h- = 48; (Help Box }
h hy = 1:
h-lines = 28;
max-prompt = 38; (Maximum Length of Character string

, Define codes used internally I
cursorleft = $18;
cursorright = $19;
cursorup = $1B;
cursordown = $IA;
clear to eol = $IE;
leftarrow = $88;
rightarrow = $89;

uparrow = $5B;
downarrow = $OA;

type

boxes = (q, m, h);
charstring = arrayl..maxprompt] of char;

Use direct console I/0 for CP/M systems I
@BDOS is a library function provided bv the compiler 1

external function @bdos(func:integer; parm:word):integer;

{* Procedure WriteCH - Send a character to terminal *1
{* Parameters : CH
{* Entry Conditions : CH is either an ASCII character or one *>

%"* of the one byte control codes to be sent to the terminal *Li [* Pro-ess : 1; the character is one of the recoonized control*;
C* bytes, then it is converted to the string required by the *;
Sparticular terminal. therwse, it is passed without.
translation directly to CeIM. i at

b-I

' . °. 9: • .o ' 9, %* 9 9: • •,•,° .- *. . - • • . . • - •, -2 . ..-.2 :- °. •°. ' .-: - * ' ' -

TermlO Nodule

procedure writechich :char);

var i : integer;

begin
case ordkcr,) of { Terminal Dependent Codes }

cursorleft : i:=@bdos(6.wrd(8)P;

cursorright : i:=@bdos(b,wrd(12));

cursorup : i:=@bdos(6,wrd(ll));
cursordown : i:=@bdos(6,wrd(l@));

clear to-eol : begin
i:=@bdos(6,wrd(27));

i:=@bdos(6,wrdLord('T')));
end-

else i:=@bdos(6,wrd(ord(ch)));
end;

end;

~*** *********I
{* Function : GetKey - Get a character from the keyboard j

{* Result : ASCII character or one byte control code entered *I
(* from the keyboard. 4}

(* Process The keyboard is scanned until the operator 4)

{* presses a key. If the terminal being used generates *}

{* multiple codes for some keys, then this procedure must *1

{* decode the sequence and return the appropriate one byte *}

(4 control code. Many terminals, for example, use escape *]
(4 sequences for function keys and the arrow keys. These 4)

I* strings must be converted into a single byte.

function getkey : char;
var i : integer;

begin
W Wait for a key to be pressed }

repeat i:=@bdos(6,wrd($FF)) until i.>@;

case i of
(DX-1 } 11 i:=uparrow;

{ arrow B i:=leftarrow;
{ keys I 12 : i:=rightarrow;

1 : i:=downarrow;
end;
getkey:=chr'i);

n d

C* Procedure GotoXY - Direct cursor positioning
{t Parameters : X, Y
{* Entry Conditions : X and Y determine where the cursor is *)

{* to be positioned on the text screen. The upper left *}
(. is 0,0.

(* Frocess : The cursor will be moved to the position X. Y, *}
4***********

" procedure gotoxy(.,y : integer);
,ar i : integer;

.- 3. %' ; o-- ... * " a ','

V F.90-.

TermIO Module

begin
QX-10 requires the following escape sequence
ESC.=,y+32,x+32 }
i:=@bdos(6,wrd(27));
i:=@bdos(6,wrd(ord('=')));
i:=bdos(6,wrd(S2@+y));
i:=@bdos(6,wrd $20+x));

end;

{* Procedure : WaitKey - Wait for a key to be pressed
{* Process : This procedure is used to allow the operator to *1
{* indicate he is ready to proceed with some operation. No *}
{* value is returned.

procedure wait-key;
var dummy : char;
begin

dummy:=getkey;
end;

************4*44*44***************4***********4***4**4)*

{* Procedure : Boto Box - Move to specific screen area *}
{* Parameters : Box, X,Y *}
(4 Entry Conditions : Box identifies which of the three screen*)
(4 areas the cursor is to be positioned in. X and Y are the *)
(4 coordinates relative to the upper left corner of the box. *}

procedure gotobox(box : boxes; x,y : integer);
begin

case box of
q : gotoxy(qx+x,qy+y);
m : gotoxy(mx+xm_y+y);
h : gotoxy(hx+x,hy+y);
end;

end;

{* Procedure : Clear Line - Clear a line of a box
{* Parameters : Box, Y

C* Entry Conditions : Box identifies which of the screen areas*"
(* is to be affected. Y is line line to be cleared. *}

procedure clearjline(box : boxes; y ; integer);

begin
goto_box(box,Z,y);
writech(chr(clear to eol));

end;

(. Procedure : Clear Box - Clear an entire screen area

{, Parameters : Box

V% V '

TermlO Nodule

"* Entry Conditions : Box identifies which screen area is to *

(* be cleared.
********4************4****4***********4****** ***4******** *

procedure clear box(bcx :boxes);
var line, lines integer;
begin

case box of
q : lines:=q_lines;
m : lines:=milines;
h : lines:=h lines;
end;
for line:=O to lines do clear line(box,line);

end;

{* Function : GetCount - Determine the size of a screen area *

{* Parameters : Box
{* Returns : The length of the screen area in lines.
{* Entry Conditions : Box identifies the screen area to use. *}

function getcount(bo,. : boxes) : integer;
begin

case box of
q : getcount:=q_lines;
m : getcount:=m lines;
h : get_count:=h lines;
end;

... end;

(* Procedure : Input_Err - Signal an error condition to user *}
[* Parameters : Err Msg
(* Entry Conditions : Err Msg is the text of the message to *}
S* displayed to the operator. *1
{* Process : The Error Message is displayed below the menu *}
(* box and the user is asked to acknowledge the message by 4)

'{ pressing any key. Control will not return until a key is *1
(* pressed, after which the message will be erased.

.5. ****.i*ii..,.*i**i*****iii****** ****4#*******************

procedure input err(err msg : char string);
begin

clearline(m,mlines+1);
write(err msg);
write(' Press any key.');

.wait ke ;

clearlIne(m.m lines+I);
enid;

{* Procedure : Init Term - One time terminal initiali:ation. *1
.., Process: Whatever initialization :s required is done here.',

1-4

7, , , , ,J%- i. - ,-. . ,. . .,. , ..'t, , . - - , - , . ,. -, . . , , . . , . ..

• •, .• • _,

TermiO Nodule

procedure init term;

begin
write(chr(26)); { Clear the screen }

end;

Aodend.

D-5

QueryYN Module

(; Yes-No Query Module - Accept ves or no answer from user ;}

t* A question is asked of the user which requ:res either a *
{yes or no response. The question text is supplied bv the *
*calling routine. The user resnonds b typing either a 'Y'

(* or an 'N' (either upper or lower case) or a ". All

(* other characters are ignored. The user types <RETURN> 4>
{* when his selection is complete.

module queryyesno;
const

cursoron = IOE;
cursoroff = OF;

return = $OD;
escape = $03; (cntl CI

ma::_prompt = 30; C Maximum length of a promot I

type
C Query Type Definitions >

promptstring = packed array[l..maxprompt] of cnar;
p_len = 1..maxprompt;
yesno = (yes, no, idunno);
boxes = (q, m, h);

C(See the Terela Module 4ar details about the following
external procedure clear box(box boxes);
external procedure gotobox(box : boxes; xy : integer);
external procedure writech(ch : char);
e;:ternal function getkey : char;

% See the Help Module for details about the following
external procedure help(helpjindex : integer);

(* Procedure : QueryYN - Get Yes or No response from user. ;}
C* Parameters Prompt, PromptLength, Answer, Help_Index
(* Entry Conditions : Prompt is a fixed length character I>

{* string containing the text of the question to ba asked, and*'
{* Promot Length defines how manv characters of Frompt to dis-'>
* play to the user. Help_Index is the help message

((associated with this question. C
C* Eyit Condition : Answer will contain eitner Yes or No i *
{ the user made a selection, or 'ADunnio if the user asked *

%' relp and didr t make a selection.

Procecure Query_yn(prompt : proot_string;
promptlength : p_en;

var anser : yesno:
relpindex : integer);

a character : char;

,-6

* ''*_r° fQ.*: ~ f:% f

QueryYN Module

i plen;

begin IL qyeryvyn3
answer:=i -d unna;
clear -box(q); writechtchrtcursoroff));
gotobox(q,l,0);
for i:=l to promptjlength do

writech(oromptli]);
gotobox(q,@,l);
write('Please Respond with tes or No.');

* repeat
goto box (q,prompt length,@);
character:=getkey;
case character of

4 'Y','y' :begin
answer: syes;
write(' Yes

end:
N',(n' : begin

answer: =no;
write(' No

end;
?': begin

answer: =i dunno;

help (helpjindex)
end;

end;
* until (character~chr(return));

writech(chr(cursoron));
clear box (q);

end;

mocend.

4D-7

" . QueryNue Module

Number Query Module -Accepts number responses from the
. operator.

: :!:": "[*A Prompt supplied by the calling program is displayed to *

. (i the user, along with the expected response value limits. *

{All numeric characters typed by the user will be accepted *
{as the response, terminated by a <RETURN'?. All non-numeric *

' {* characters will be ignored, and <RETURN> will be ignored *

{*if the value is out of range. *
" '" {* The following editing features are available to the user: *

.." -'i.

(4ueCharacter Insert - typing control-S will cause all t

"" ... {*characters to the right of the cursor *
4to move to the rght. Any character at*
* Ar up edbthe last position will be lost if the

th s a g t number is already 1 characters long.
(* Character Dlete typing contrl-D will cause allc td
(4 charcharacters to the right of the cursor

{* to move to the left, deleting the char- *
* if eacter under the cursor. *{* Sign Change ed At any time, typing a '-' will mavee the 4)(hr e n t number negative, and a '+ will make it *1

{*positive. The default is positive. 31
" (haIt doesn't matter where the cursor is *

(4 a]m {* when the sign is changed. cr

SCursor Motion The left and right arrow keys (or their
S{* Crcerequivalents) will cause the cursor to

(.'o move in the appropriate direction. Tne *)

" {lcursor location when eRETURN., is preised*}(
' is not important. All visible hara-

igh* ters will be in the response. m t
SOther Features include specific help messages and units *1

{(conversion.hsh

module numeric-query;

const
leftarrow = $ -8; Te eft ar rrow keys

rightarrow =$09;
cursorleft = I e: Define cursor motion ommands

cursorright = $li;
ins = ntp; 'cntl S} Define Editing Commands *

del = $04; 1ct j}
change = 115; {'cntl U}j
return = s Ol)

tr l ienull = $0o

"-'may._prompt = 172; {Maximum length of a prompt]

L type

Oery Type Definitions pa
:"ao" unit = (mils, arrw, kys i
cri ta strin = packed array[l..ma: orompt] o4 cnar;

crsor~t _1 % Dt

4% -k*SS Se S - -. S .. _S

QueryNum Module

p_len = 1..maxprompt;
boxes = (q, m, h);

(Screen I/O Declarations I
C See the TermIO Module for details on the following
external procedure goto_box(box : boxes; x,y : integer);
external procedure clear _line(box a boxes; y : integer);
external procedure clear box(box : boxes);
external procedure writech(ch : char);
external procedure wait-key;
external function getkey : char;

(See the Help Module for details on the following)
external procedure help(helpindex : integer);

***************4***4*444*44* *4*4*********44444}*

(* Procedure : QueryNUM - Accept Number from user *1kC Parameters a Prompt, PromptLength, MIN, MAX, Answer, *}
(4 Units, Help Index
C' Entry Conditions : Prompt is a fixed length character *}
(* string which contains the question being asked. Prompt 4)

(4 Length is the number of characters of Prompt to display. *1
V' MIN and MAX describe the valid range of the number in ails.*)
(f All internal numbers are stored in units of mils (or as *)
C' unitless scalars). Units represents the default -nits 4)

(* used for display only. HelpIndex is the spet.'ic message 4)

(4 associated with this query. *}
(P Process : MIN and MAX are converted from oils to Units. *)
(4 and displayed beneath the Prompt. The User's response is C
(* compared with MIN and MAX to verify iV. A valid response *)
(* is converted from Units to mils and is returned to the
(* caller. The user may change the default units at any time *)
{* by pressing control-U until the desired units appear. 4)

(4 Exit Conditions : Answer will contain a number between MIN 4)

{(and MAX ails (or scalar). 4)
(***************4*************************44*4*44*)

procedure querynum(prompt : promptstring;
promptlength : plen;
min, max : integer;

var answer a integer;
units a unit;
help_index a integer);

var ra.qe _violation,
help request,
unit-change : boolean;

i : 1..max-prompt;
response, dmin, dmax : real;

dummy : char;

j', procedure getnumber;
type pos = I..may_num;

D-

%>.. * c .

GueryNus Module

var character : char;
point, negative :boolean;

numberstring : packed arravEl..max _num) of char;
current Dosition,
point position,i : pos;

* procedure show number;
var i :pos;

* begin
goto~box (q,current position~prompt length+ ,0);
for i:=currentposition to max _num do

writech (number stringU)3);
goto box (q current position+prompt length+1,e);

end;

* procedure sign~ch : char);
begin

goto ~box (q,promptlength+1,0);
writech (ch) ;
gotobox(q,currentposition+promptjlength+l,0)

end;

procedure add-digit;
begin

numberstring(current position):=character;
writech (character);~
if current position<max -num

N then current position: =current.posi tion+l
else writech(chr(cursorleft))

end;

procedure insert digit;
var i : pos;

* begin
if point

then if pointposition. current.position
* tnen begin

point position:=point Aoiin1

if point -position>max num
then point:=false

end;
if current position<max num

then for i:=mam -num downto current position+l do
numoer-stringri]:=nuinber-strngbi-l);

number str inq Icurrent -position):=
show-number

enC;

procedure delete digit;
var i :pos;

*4.~vbegin
jf point

01 .

gueryNum Module

then begin
if current position~point posi tion

then point:=false;
if paint posi tion~current posi tion

then point position: =pointoposition-1;
end;

'.if currentposition~maxuiiim
then for i:=current position to max -num-1 do

number stringli]: =number stringtii 1);
number stringtmay numj:=
snoo number

end;

procedure convert;
var power :real;

prccedure getjint partposition :pos);
var i :pos;
begin

oower: =1:
for i:=position downto 1 do

if ((number strirgfi3J>-'') and
(number stringU](<.=9'))

then begin
response:=response+power*

(ord(number-stringU]l)-ord('fl));
powoer: =pooer4 I@

end;

end;

procedure get frac vart(position : pos);
var i : pos;
begin

power:@. 1:
for i:=position to max -num do

if ((number string~i>'@) and
(number string~i1<= 9'))
then begin

r e soon se :respan se~power*
(ord(number -strinqi1/-ord('O')i

end-
end;

beoin C convert
response:=O.O;
if not point

then getLintpart(max nu)
else begin

if point position'1
then get intpart(pointpa to-1);

i point position,,max-num psto

QueryNum Module

then get fracparttpaint oosition+1)

end;
if negative

then response:=response*(-1);
end;

K.. begin %'getnumber
current~position: =1;
for i:1l to tax num do number .string~iJ:=';

'0 snow number;
helpjrequest: =fal se; unitchange:=false; paint: ial se;
negative: =4alse;
repeat

character:=getkey;
case character of

begin
Ni (point and (current pasitzon=pointpositaon))

"tLLhen point:=false;
i's add-digit

end;
if not point

then begin
pointy.osition: =current position;
adddigit; point:=true

4. end;
N. ' ' .begin

negative:=true;
sign('-')

end;
'':begin

negative: :false;
sign(' '

end
'':help request:=true;

end; {case)
case ord(character) of

ins insert digit;
del :delete digit;

change :unit change:=true:
ieftarrow : V current position. 1

then begin
current oosit6ion: =current pos-ition-i:

.. writecn(cnr(cursorlefti)
end;,

rightarrow if current Dositionunanum
;4.. then begin

* . current position:=currenz~positiontI;
writech(cnr(cursorrignt))*~ ,.c.*end;

return :convert:

D -12

-k -..1ZW

GueryNus Nodule

end C case
until itcharacterchrtreturn)) or

4' (character="') or
(cnaracter=chr (change)))

end; t getnumber

function to -inches~mils : integer): real;
begin to inches:=mils/lI0e.0 end;

function tommWails : integer): real;
begin to mm:=to inches(mils)*25.4 end;

* begin *[querynum I
clearbox (q) ;

* repeat
range violati on:=false;

for i-1I to prompt length do writech(promptil);
for i:=l to max num do writechU J

case units of
inches: begin

%IwriteU inches
d min:=to inches~min);
d d max:=to inches(aax);
clear.) ine(q,I);
write('Range: *,dmint7:3,' to ',djaax:7:3)

end;
mm: begin

write(' millimeters');
d min:=to-mm (min);
d sax:=to mm (max);
clear line(q,l);
writeURange: ',diain:7:3,' to ',djnax:7:3)

.r". end;
.. 4fails: begin

write(' Mils 1
d -mi n:=min; d max:=max;
clearjline(q,I) ;

% ~write('Range: ',dmin:b':B,' to '.djnax:6:0)
end;

Ascalar: begin
d -mi n:min; d max:=max;
clear line(q,l)-
write('Range: ',dmin:6:0,' to ',d-ma :6:01

end;
end; Ccase 13

* getrnumber;
ii unit-ch ange

then case units of
sc al ar: units: =scal ar;

* .*.mils: units:=inches:
inches: units:=mm;

D-1Z

V' IF.u~ II .~ W ~. Uj~ ~ ~ ~ T ~ ~ Y J Y ., I -*- .

GueryNum Module

am: units:=mils;
end:

- 00 if felpjrequest
then help(help index);

if ((not (unit 3hange or helpjrequest)) and
((respnsedmin) or (response d max)))

then begin
clear line(q,2);
write('Response not within range. Press any key to cant

inue');
wait key;
clear li ne(q,2);
range vial at ion: =true

end*,
until (not (help request or range..violation or unit-change));
case units of

mils,scalar :answer:=round(response);
inches : answer:=round(response*l000);

am: answer:=round(response*18II/2&.54);
end;
clear _box(q);

end;

modend.

-14

~%

QueryStr Module

(. String Query Module - Accepts string responses from the *}
operator. *}

{* A Prompt supplied by the calling program is displayed to *3
{* the user, along with the expected response length limits. *3
(* All text typed by the user will be accepted as the *3
{. response, terminated by a <RETURN>. All characters typed *}
{* after MAX characters will be ignored, and <RETURN> wi!l be *3
(. ignored until MIN characters have been typed. *}
{* The following editing features are available to the user: *}
{* Character Insert - typing control-S will cause all *}

characters to the right of the cursor *3
to move to the right. Any character at 0}

(* the last position will be lost if the *}
string is already MAX characters long. *}

(* Character Delete - typing control-O will cause all *3
{* characters to the right of the cursor *}
{* to move to the left, deleting the char- *}

acter under the cursor. 4)
{* Cursor Motion - The left and right arrow keys (or their *}

equivalents) will cause the cursor to 0)
move in the appropriate direction. The *
cursor location when <RETURN> is pressed*)

(* is not important. All visible charac- *
{* ters will be in the response. *1
{* Other Features include specific help messages and UPPER or *}
(4 lower case conversion. *}

module string query;
const

leftarrow = $08; (Define arrow keys)
rightarrow = $09;
cursorleft = $18; (Define cursor motion commands 3

cursorright = $19;
ins = $13; {cntl S) { Define Editing Commands I
del = $94; {cntl D}

return = $O;

null = $00;
huh = $3F: { Question Mark '?

_maxprompt = 30; (Maximum length of a prompt I
ma _str = 30; (Maximum length of a string I

type
{ Query Type Definitions }

promptstring = packed array~l..max_nrompt] of char;
p ien = 1..maxprompt;

position = l..maxstr;
string case = (upper, lower, none);
char-str:ng = packed arravtl..max str] of char;

* *. boxes = (q, m, h);

D-15

~ _ _ e

ueryStr Nodule

- Screen I/O Declarations }
{ See the TeruIO Module for details on the following 1
external procedure noto-box(box : boxes; x,v : integer);
external procedure clear box(box : boxes);
external procedure writech(ch : char);
external function getkey : char;

(See the Help Module for details on the following }
external procedure help(help_index : integer);

{* Procedure : QuerySTR - Accept String response to query *1
{* Parameters : Prompt, PromptLength, MIN, MAX, Answer, *}
C* StringLength, MakeCase, HelpIndex *}
{* Entry Conditions : Prompt is the question being asked of *}
{* user, and is a fixed length string of characters. Prompt_ *
{* Length indicates how many of those characters are to be *}
{* aisplayed. MIN and MAX indicate the minimum and maximum *}
(* number of characters that will be accepted as a response. *
{* Make Case indicates what, if any, case conversion will be *}
{* performed on return, and Help_Index identifies the help *)
{* message associated with this query. *}
C* Exit Conditions : Answer will contain the text typed by the*}
(* user in response to Prompt. The length of Answer will be *
(* between MIN and MAX characters, and will be indicated by *1
(* StringLength. *1
{* THe HELP routine will be invoked in response to ?' being *0
(* typed at any time, and a question mark is therefore not a 0)
{* valid character in a response. *}
{**4444*4444444*444#444*4*44***********************

procedure querystr(prompt : promptstring;
prompt_length : p_len;
min, max : position;

var answer : charstring;
var string_length : position;

make-case : stringcase;
help_index : integer);

var help_request : boolean;
j : p_len;
i : position;

P. Procedure : GetString - Accept users response *}
{* Process : Does most of the work - accepts and edits tent 41
{* supplied from the keyboard into Answer. *}

procedure getstring;
var character : char;
i, currentposition : position;

*4*4*44 444 4444 *444*44*44444**4*4 4*444*t444 4*4* *44* 44* 4*4* *4

0-Ilb

.ueryStr Nodule

{* Procedure : Redisplay
{* Process : Display current version of Answer on the entry *}
Ct line. The cursor position is not changed.

procedure redisplay;
var i : position;

begin
gotobox(qprompt_length+currentposition,@);
for i:=currentposition to string_length do

writech(answeri]);
if string_length<max

then for i:=string_length+l to max do
writech(" ');

gotobox(q,prompt2length+currentposition.0);
end;

C* Procedure : Insert Char - Open a space in Answer *}
{* Process : The characters of Answer from the cursor to the *
C* end are shifted to the right one space. *1

procedure insertchar;
var i : position;
begin

if ((currentposition < max) and
(strin _length>=currentpositionl)

then begin
for i:=max downto currentposition+l do

"., answer[i]:=answer[i-i];
79 if string_length<max

then string_length:=string_length+l;
answer~currentposition]:= '1
redisplay

dend;~end;

C* Procedure : Delete Char - Delete character under cursor *}
:* Process : All the characters of Answer to the right of the *

* cursor are moved right one space, and the last character *1
(4 replaced by a space.

procedure deletechar;
var i : position;
begin

i ((:urrent-position <max) and
(string_length>=currentposition))

then begin
ior i:=currentposition to max-! do

answer i]:=answer[i+1];
stringlength:=stringlength-l;
answer~max]:=

D-17

AV.

Ok .. -. -. ?. . .. 'I. .. .I. % . . ! _,

.7f

OueryStr Module

" € redisplay

end;
if ((currentposition=max) and (stringlength=max))

then begin
stringlength:=stringlength-i;
answer[max]:=" ';
writech('_'); writech(chr(cursorleft))

end;
end;

(* Procedure : Move-Left
(* Process : The cursor position within Answer is moved one *)
{* space to the left, if possible.

Procedure moveleft;
begin

if currentposition>1
then begin

currentposition:=currentposition-l;
writech(chr(cursorleft));

end;
end;

** **************}*

{* Procedure : MoveRight *1
{* Process : The cursor position within Answer is moved one *1
{* space to the right, if possible. *}

procedure move right;
begin

if currentposition<max
then begin

currentposition:=currentposition+1;
writech(chr(cursorright));

end;
end;

* Procedure : Add Char - append keyboard character to Answer *}
{* Process : If there is room, Character will be added to
f* Answer, and the cursor position will be updated. *)

procedure add char;
begin

ii stringlength<currentposition
then string_length:=currentposition;

answer[currentposition]:=character;
writech(character);
if current position<max

then currentposition:=currentposition+I
else writecnchr(cursorleft)):

-AI

r.r 4 .W.

GueryStr Module

end;

begin (getstring }
U. gotobox(q,promptlength+1,0);

if max>max str then max:=maxstr;
currentposition:=1;

string length:=9;
for i:=1 to max str do answer[i]:='
help_request:=false;
repeat

character:=getkey;
case ord(character) of

ins : insertchar;
del : delete_char;

leftarrow : move left;
rightarrow : move-right;

C. return : if stringlength<min

then character:=chr(null);
huh : help_request:=true;

end;
if ((character>=) and (character<=chr(127)))

then addchar;
until ((character=chr(return)) or helpjrequest);

end;

f{ Procedure : MakeUpper - Convert all characters in Answer *}
"t Process : All alphabetic characters in Answer are trans- *}

lt fated to upper case. Punctuation and numbers are not *}

fteffected. *

procedure make-upper;
var i : position;
begin

for i:=1 to max do
if ((answerEiJ >= 'a') and (answer[i] <= ')

then answertiJ:=chr(ord(answer[i])-ord('a')+ord('A'));
end;

.-
{* Procedure : Make Lower - Convert all characters in Answer *1

- . t* Process : All alphabetic characters in Answer are trans- *1
* effectelated to lower case. Punctuation and numbers are not *}

I* effected.

... procedure make-lower;
var ± : position;
begin

for i:=l to max do
if ((answertil > A') and (answerli] <= 'Z'))

then answerfil:=chr(ord(answer[i)-ord(A)+ord(a'));
end;

-I

I~ -r- 4. . . - . - ~

QueryStr Nodule
9."-

begin f querystr I
clearbox(q);
repeat

goto_box*q,@,@).

for j:=1 to promptlength do writechiprompt[j]);
writech(° ');I

for i:=l to max do writech('_');
goto_box(q,@,l);
write('Response must be between °,min:2, and ',max:Z," character

s');

getstring;
if helprequest then help(helpoindex):

until not helprequest;
case make case of

upper : makeupper;
lower : make lower;

end;
clearbox(q);

end;

modend.

{* Operating System Dependent File Operations

module dos file;
type filespec = arrayl..12] of char;

drive-id = CA, B);

'See the Disk ID module for details on the following I
external procedure switchdisk(drive : drive id; diskid : integer);

{* Procedure : Run-File - Execute a program *1
{* Parameters : File_Name, Drive, Disk_ ID

{* Entry Conditions : The parameters identify an executable *1
{* program that is to be run. Control will not return'H'! *}

orocedure run file(filename : filespec; drive: driveid:
disk id : integer);

var f : file;
is : string[12];
i : integer;

begin
switchdi sldrive,disk-id);
i:=l;

repeat
fs~i]:=file nameli]:

i:=i+l;
until ((fs(i]') or (i>12)):

assign(f,fs);

NNis

-............ . 4. - - - -* 4 - 4................... 4 . - - .' \ 4- 4.'...4 - 4 . - - . 4 ...-. 4

#4S~~**

DOSFile Nodule
reset(f:

4~ 44

chain (i)
end;

i~odend.

-- '4

~..4 .4
4.-'

~'.~444

.4 -~

.44*
S..

.~v.
4'.'

'4-'.

* 5'-

*4 -

"4
~*4

'4,

.4. 5'.'

44~
.4

4, .4

*34.444
.4.

-44.4

4/'
.4

44

*4~4.4

-- '4
*4*4444

44.

44
5'

4?

4/'

4% *4'

D- I

* 5'.

44 *~* **~9~4 ~
'4 ~ '4'~ ~."

I°..

--- DiskID Module

I* DiskID Module - Identifies diskettes in drives and *
{* prompts operator wnen switches are 11

necessary.

{ Every diskette used by the system contains a small file *1
, with a DiskID number as its only element. This file is *}
{* referred to when the identity of any diskette is required. *1

.. {* If the file isn't present, then the DiskID is set to 0. *1
* . ***********4***}

-2 module diskid;

const maxprompt = 30; C Maximum length of a prompt
max str =3; (Maximum length of a string }

type
Quer\ Type Definitions }

prompt string = packed array[l..ma;!prompt) of char;
p len = 1..max prompt;
yesno = (yes, no, i _dunno);
boxes = (q, m, h);

{ File Access Type Definitions I
drive id = (A, B);
id num = file of integer;

C Screen I/O Declarations I
i See the TermIO Module for details on the following }
external procedure clear line(box : boxes; y :integer);

-d .~external procedure wait key;

C,, ery Declarations i
C See tne QueryYN Module for details on the following I
external procedure queryyn(prompt promotstring;

prompt_length p_len;
var answer : yesnc;

-4.' help index : integer);

{ See the LinkFile Module for details on the following I
* external procedure close all(drive : drivemid);

C '/M HGOD call necessary to switch diskettes
. This ;unction is defined in the MT+ Run-Time Library I

'I eternal function @bdos(func : integer; parm : word) : integer;

C*r jcure Set ID *3

c Fa-ameters Drive, ID File
(* Entry Conditions : ID _File is the identification ;ile. ane *3
,* £rive identifies which drive is to oe used. *)
{* Frocess : The physical filename 'DISK.ID' on drive Drive *J

- - (s is associated with the pascal logical file ID File. C: ************************************#************ }**

D0-22

DiskID Nodule

procedure setjid(drive : drive id; var id file id num);
begin

case drive of
A : assign(idfile,'A:DISK.ID');
B : assign(id file,'B:DISK.ID');

else assign(id file,*A:DISK.ID');
end;

end;

"{ Function : WhichDisk * ,
{* Parameters : Drive
{* Result : Disk ID of diskette in Drive *}
(* Entry Conditions : Drive identifies the drive to be looked *2
(* at.
{* Exit Conditions : The function will return the Disk ID of *2
{* the diskette in drive Drive. A value of 0 indicates that *1
f{ either the diskette is not labelled, or there is no disk *2
{* in the drive. *2
*** I

function whichdisk(drive drive id) : integer;
var id file : idnue;

id : integer;
status : byte;

begin whichdisk I
set id(drive,idfile);

* { IGRESULT is a function that returns the value of the CP/M
BDOS result. It is defined in the MT+ library. I

reset(id file); status:=ioresult;
if status<>255
then begin

read(idfile,id); Z
status:=ioresult; %

end;
if status=B then whichdisk:=id

else whichdisk:=;O
end;

[* Procedure : ID Visk - Write an ID number on the diskette *}
(* Parameters :Drive, Disk Num *,
{ (* Entry Conditions : Drive identifies the drive the diskette *}
* is in, and Disit Num is the number to be written in tne *}
{* ID File. }2

procedure id disk(drive:drive id; disk num:inteaerl;
var id file : idwnum;

status : inteaer;
begin

set id(drive.id file);
rewrite(id file)

A:- -

DiskID Module

write(idfile,disknu);
close(id file,status);

end;

{* Procedure : SwitchDisk - Make sure that the right diskette *}
r* is in the right drive.
{* Parameters : Drive, Disk ID
{* Entry Conditions : Drive and DiskID identify the desired *
{* setup; that is, Drive is to contain diskette DiskID. *}
{* Exit Conditions : The proper diskette will have been moun- *}
(* ted in the proper drive. *

procedure switchdisk(drive : drive id; diskid : integer);
var answer : yesno;

id : integer;
d : char;

begin (switchdisk }
id:=whichdisk(drive);
if id<disk id

then begin
if drive=A then d:='A' else d:='B';
close all(drive);
repeat
clear_line(q,-1);
write('Insert disk number',diskid:3, ' into drive °,d:1);
repeat

queryyn('Ready to Go? ',12,answer,1I8

until answer=yes;
clear_line(q,-1);
id:=@bdos(13,wrd(O)); i Reset Disks }
id:=whichdisk(drive);
if id<>disk id

then begin
write('This is disk number',id:3,', not ',disk id:

write('! Press any key.*); wait_key;
end;

until id=disk id;
end;

end;

{* Procedure : New Disk - Prompt the user to Label a New Disk *0
(* Parameters : Disk ID
{* Entry Conditions : Disk ID is the number to be written on *
{* a newly formatted diskette.

4 -. procedure new-disk(disk id : integer);
var answer : Yesno;

ro.
,D-24

,: Z4.5 . -. ~~Z*\ ... ~ ... :. -. *.V.. ~.2.:. •*

-. DiskID Mlodule

begin
clear line(q,-2) ;
write('Get out a .blank formatted disk (disk 0)'~
repeat

query yn('Are you ready? ',l4,answer.19);
until &nsweryes;
switchdisk(B,@) ;
id -disk(B,diskjid);
clear -ine(q,-1);
write('Label this disk as Disk # ',diskid:5'S);
repeat
query yn(VHave you labelled it vet? ,25,answer,22);
until answer=yes;
clear -ine(q,-1);
clear line (q,-2);

end;

modend.

%4.%
4NE

LinkFile Nodule

(* LinkFile Module - Controls access to all files

{* All system files are maintained as two doubly-linked
{ circular lists. One list contains all of the allocated .5

{* records in the file, and the other contains all of the
{* free records. Every record in the file must belong to one *}
(* of these lists. Non linked files are also supported. *}
{* For maximum portability, the maximum record length is 128 *1
W* bytes.

module file-access;
const

end of list = -1; { Invalid Record Number I
max open = 10; C Maximum numoer of iiles

max rec_size = 128; C CP/M Maximum Record Size
max buffs = 2; C Maximum number of simultaneously open files

type
{ File Access Type Definitions }

drive-id = (A, B);
filespec = packed array[l..12J of char;

J ___whichfile = 1.•max _open;
links = record

next,
prey : integer;

end;
max-rec = record

case boolean of
true : (data : packed arrav[1..max_recsize] of cha

false: (link : links);
end;

data file = file of max-rec;
file desc = record

fs : string[14];
linked : boolean;
drive : drive id:

on line : boolean;
reclen, C Record Length I
disk_id, { Diskette containing file I
status, { System Dependent File Status)
first, { Record Number of First Entry I

next free, (Record Number of Free List I
recs avail, { Number of Unused Records 1
next read, C Next record pointer i
last-read, C Last Record Accessea }

last_p rec : integer; I Last Physical Record
• .. bufrnum : byte: C Current buffer number 5

end,

D-26

r LinkFile Nodule

where record
lAinked : boolean:
file name :filespec:
a3ri1ve : driveid
disk id.

* ret len,
- S recs avail,

first,
free :integer:

end;

CGlobal Arravs of file information}
var files : arraytwhichfile) of file aesc; C Logical file info

P Buff : arrav~l. .max buffs) of oata-file: C Pnvsical buffer array
P slot : array[l. .maxytuffs] of byte; Which slot buffer nelon

gs to60
next I : byte: Neyt slot tc; free u-
buffer : max ret; Temporary buffer area

CSee the Diskla Nodule for details an the following
external procedure switchdisk(drive % drive id; diskid : integer?;

V C System Dependent Random Access File Routines)
procedure fread(file -num : whichfile; ret num :integer;

var buffer z uaxrec; linkonly :boolean?;

var prec-, rec offset, i, bytes : integer;
begin

with filestfile-num] do
aec inr

p-rec:=(rec-num * ret len) div max ret size;
recaoffset:=(rec-num * (rec len mod max rec size)) mod mav-rec-

size;
if prec<>lastprec

pg then begin

seekread(P -buff~bufnuml,prec);
status:=iaresult;

end;
i; iinkonlv then bytes:=4 else bytes:=rec len:
for i:=! to bytes do

regin
rif re:t ofisetzmax ret size

then begi.n
ret offset:20;
; re::=* ret-Id;
seek:read (P buff (buf num) ,p jet);
status:=i oresul t;

end;
buffer.datai 3: P buff~buf num3) data~re: oifset+2:I-
rec off set: =ret of Iset"];

* end;
last p rec:-p ret:.

D-27

5JA

V. 7.q..7 r

%I

LinkFile Module

end;
end;

procedure fwrite(file num :whichfile; recnum :integer;
var buffer : max-rec; linkonly boolean);

var prec. rec offset, bytes,i : integer;

begin
with files~file-nua] do
begin

P rec:=(rec num * rec len) div max _rec _size;
rec offset:=(rec flum (rec len mod max rec size)) mod max rec

size;
if pjrec\K>lasty _rec then seekread(P -buff~buf -numl,prec);
if linkonly then bytes:=4 else bytes:=rec len;

% ~for i:=1 to bytes do
% , negin

if rec-offset=max rec size
then begin

seekwrite (P -buff ~buf num] p jec);
* prec:=p rec+ 1;

seekread(P _ buff~bufnua],prec);
rec offset: =@;

end;
Ps Pbuff~buf numl.data~rec.offset+1 J:=buffer.datali J;
rec of fset:=rec of fset+It

end;
seekwrite(P -bufftbufjium,prec);
status: =ioresul t;
lastprec-=prec;

end;

end;

{*Procedure : StateF - Determine Current Pointer Values *
(Parameters : FileNum, First, Free
(Entry Conditions :FilejNum identifies the file to be
(*looked at. *
(Exit Conditions :The current values of the heads of the
{~allocated and free lists are assioned to First and Free. *1

procedure statef (file num:whichfile; var first.free :integer);
begin

iirst:zfi les~file -numl.first;
free:=filestfi le-rumJ.ne:,t-4ree;

end;

~Function : RoomF - How mucn Room is Left in the File' 4
{Parameters : File Num
{Result : Number of Unallocated Records in the file

7%

LinkFile Nodule

function roomf(file num : whichfile) : integer;
begin

roomf:=files[file-num].recs avail;
end;

********************.****..***~****,.**********************

Procedure: ResetF - Set pointers to the top of the file: FileNum *1
{,Parameters Fl u

{* Process : The file pointers NextRead and Last-Read are *)
(* set to the first allocated record in the file. Any file *}
(' access after a resetf will access the first record. a

procedure resetf(file num : whichfile);
begin

with files[file num] do
i4 linked

then begin
last read:=first;
next read:=first;

~end

else next-read:=@;
end;

"a Procedure : InitF - Initialize a slot in the Files array *}
(* Parameters : File Nua, FileLoc ,)
(a Entry Conditions : File~Num identifies the slot to be a)
,* initialized, and FileLoc contains the initialization ,}
(a parameters. ,}
.{ Process : The File Num slot will be loaded with FileLoc ,}
({ and the file will be set to off line status. The 4ile *}
(w will then be reset to the first record. ,)

procedure initf(file num : whichfile; file_loc : where);
var i : ..12;

d : string[2];
tfs string[2l];

begin
". . with filestfile num] do

begin
if file loc.drive=A then d:='A: else d:=E::

I. Convert character array file name into string)

while fileloc.file name[i]K>' do
begin

tfs~i]:=file-loc.file-namei]:
i1=i+I

end;
p t*s[4]:=chrti-1);

Add drive designation to filename }
fs :=concat(d,tfs);
linked := file loc.linked;

- ' '

- lrr r rr. . C

LinkFile Module

disk id = fileloc.disk-id;
drive := file loc.drive;
reclen := file loc.rec len;
recs_avail := file loc.recs-avail;
first := file loc.first;
next-free := file loc.free;
on line := false;

end;
resetf(filenum);

end;

*Procedure : InitFiles -Onetime Files Array Initialization
{* Process : Sets ALL file slots off-line so that a Close All *}

{* ooeration (See Below) will not attempt to close file slots *l
(* that were never initialized. Should only be called once. *}

procedure init files;
var i : t..Maxopen;
begin

for i:=1 to max_open do
with files[i] do
begin

cn line:=false;
fs[0l:=chr(O);
last_p_rec:=-I;

end;
for i:=1 to max buffs do P _slotlil:=@;
next l:=l;

end;

{* Procedure : CloseF - Close Random Access File *1
9,1 {* Parameters : File Num 4)

(Process :The file in slot File Num is closed and the On- .
p ! (* Line flag is reset. If already off-line, nothing is done. *)

procedure closef(file-num : whichfile);
begin

with files[file num] do
begin
if on-line

then begin
close(P buff ouf num],status);
on line:=false;
last-p-rec:=-l;
P_slottoufnum]:=@; { Release the buffer)

end;
end:

end;

[1- 30

LinkFile Nodule

,* Procedure : OpenF - Open file for reading or writing
{* Parameters : FileNum .
.* Process : The file in slot File Num is brought on-line. *3
(* If the file is already On-Line, then nothing need be done. *]
* If, however, the file is off-line, then the diskette *}
{* containing the file must be mounted, the system dependent *3
{* association between logical and physical files must be made*l
(* and the file opened for random access. *}

procedure openf(file num : whichfile);
var i : integer;
begin

with files[file num] do
if not on line then

begin
switchdisk(drive,disl id);
1 Look for an available buffer 3
buf -num:=@; i:=l;

repeat
if P slot[i]=@ then buf num:=i;
i ::i+l;

until ((i>max buffs) or (bufnum<>@));
(If one isn't available, Free one up 3
if buf num=l

then begin
closei(P slot[next_13);
buf-num:=nextl;
next_1:=next_1+1;
if next_1>max buffs then next 1:=I;

end;
{ Reserve the Buffer for this slot 3
P_slot[buf num]:=file num;
{ Attempt to open the file I
open(Pbuff[bufnum],fs,i);
f A return code of 255 means the file doesn't exist,

so it must be created. }

if i=255
then begin

{ Create tne file }
assign(P_buff[buf num].fs);
rewrite(P buff~buf num]);
close(P buff~buf num,i);
{ Goen the newly created file }
open(P_buff[bufnum],fs,i);

end;
on line:=true;

end;
end;

{***

"{ Procedure : Close All - Close all files on a drive *3
(* Parameters Drive ,}

• - 7. .

_ , • . - , , - " -!- -- I -k L ..- - a ~

LinkFile Nodule

{* Entry Conditions : Drive indicates which drive is to have *1
{* all of its open files closed. *1
{(Process : This routine is called prior to removal of a disk*)
{* from a drive to ensure file integrity. Each slot in Files*)
{* is checked to see if the drive matches. If it does, the *

(4 file is closed.

procedure close all(drive : drive id);
var fx : whichfile;
begin

for fx:=1 to maxopen do
if files[fxJ.drive=drive then closef(fx)

end;

{* Procedure : ReadF - Read the Next Record *1
C* Parameters : FileNum, Buffer, EOLF *1
{* Entry Conditions : File Num identifies to file to read. *)
C. Next Read contains the record number of the next record to *1
C* be accessed. *1
t* Exit Conditions : Buffer contains the record read, and *}

C* Next-Read and Last-Read will be updated accordingly, unless*'
(* an end of file condition was detected. In this case, the *1

Buffer will not be modified and EOLF will be set. *}

procedure readf(file num : whichfile; var buffer : max_rec;
var eolf : boolean);

var i : integer;
link : links;

begin
openf(filenum);
with files[file num] do
if linked

then begin
if ((next read=first) and (last reado>first)) or

(next read=end of list)
then eolf:=true
else begin

fread(file num,next_read,buffer,false);
last read:=next-reao;

next read:=buffer.>ink.next:
if last read=next read t There is only one recor

dI
then eclf:=true
else eolf:=false;

end;
end

else begin
fread(filenum,nextread,buffer,false :
next read:=next-read+1;

' . i status=@
then eolf:=false

D-,729
- 4**%V 4 , ,,..%.yy;.§§Q§,tU.-*c-.. .* .

LinkFile Module
..

else eolf:=true:
end;

end; { readf I

{* Procedure : WriteF - Update the Last Record accessed *}

A* Parameters : File _Num, Buffer, WriteOK *}

C* Entry Conditions : File Num identifies the file to write *}
{* to. Buffer contains the information to be written. Last- *1

{* Read is the record number to be written to. *}
{* Exit Conditions : Buff will have been written to the file. *2
{* No re-positioning will occur, so successive writes will *}
t* over-write the same record. WriteK will be TRUE if there *1
{* were no write errors. *}

procedure writef(file num : whichfile; var buffer maxrec;
var writeok : boolean);

var i : 1..maxrecsize;
begin

openf(filenum);
with files[filenum] do
if linked

then if last readOend-of list
then begin

writeok:=true;
fread(filenum,last_read,buffertrue);
fwrite(file_num,lastreao,buffer,false);

end
else writeok:=false

else begin
fwrite(file_num,nextread,bufier,false);
next -read:=next-read+1;
if status=@

then writeok:=true

else writeok:=false;
end;

end; C writef }

C*** ***** **********)*

(* Function : Del Rec - Delete a record from one of the lists *2

{* Parameters : FileNum, Pointer
{* Result : Record number of deleted record *2
{* Entry Conditions : File Num indicates file to use, Pointer *}

(4 is the record number to be deleted. *2
{* E it Conditions : The record will be deleted from the list *2
(* and pointer will be set to tne the next record in the list.*}

function del-rec(file num : whichfile; var pointer : integeri : integer;

var Iin, : nks
begin

ooenf(filenum);
with filestfile num do

~D-Z3

!--&..

LinkFile Module

begin
del rec:=pointer;
C Read the Next and Previous Record numbers
fread(filenum,pointer,buffer,true);
link:=buffer.link;
if link.next=pointer (It's the last record }

then pointer:=end of list
else begin

{ Make the Next record the new Current record I
pointer:=link.next;

{ Delete the record from the forward list I
fread(filenum,link.prev,buffertrue);

buffer.link.next:=link.next;
fwrite(filenum,link.prev,buffer,true);

A'Delete the record from the backward list
fread(filenum,link.next,ouffer,true);
buffer.link.prev:=link.orev;
fwrite(filenum,link.nextouffer,true);

end;
end; { with

end; % del rec I

(a Procedure Ins Rec - Insert a record into one of the lists*)
(a Parameters : FileNum, New_Rec, Pointer a)
{a Entry Conditions : FileNum indicates which file to use, *
(a NewRec is the number of the record to be inserted into the*)
C{ list, and Pointer is the number of the record that NewRet *}
(a will be inserted after. *}
(* Exit Conditions : The links will have been adjusted so that*.
* NewRec logically follows Pointer in the list. *}

procedure ins rec(file num : whichfile; newrec : integer;

pointer : integer);
* var link : links;

begin
openf(file_num);
with files[file num do
begin
i pcinter=end of list (Empty List 3

ther begin
Make New Rec the only entry in the list 3
buffer.link.prev:=newrec;
buffer.link.next:=newrec:
fwrite(file num,new rec,bufier.true):

end
else begin

C Insert New Rec into the forward list Y
fread(filenum,pointer,buffer,true);
link.prev:=pointer; link.next:=buffer.link.ne ,t;buffer.link.next:=newrec;

fwrite(file-num,pointer,buffer.true);

~D-34

-U- %U U -- -,,' - ,o *-,*., ,o. " -U -- ".%. .% '•" V S %. %-'CVV, .',%'%,.V - . .. ,,o% ,+%',"--...a" g , . ,,. U. 0 .t, .I' ... ,., IZ,, .. S,. k ,ft a snS t..At..CXVC ''.. "

A - . * .. *

%'

LinkFile Module

, Insert New Rec into the backward list
fread(filenumlink.next,uffertrue):
tuffer.link.prev:=newrec;
fwrite(file num,lnl:.next,buffer,true);
M { Make New Rec point to its neighbors
buffer.link:=link;
fwrite(file-num.new-rec~buffer,true);

end;
end; C with }

end; { ins rec)

C* Procedure InsertF - Insert a record into the file
{* Parameters : File Num, RecNum, Buffer
{* Entry Conditions File Num indicates the file to use.
C{ Buffer contains the information to oe inserted. Last
C. Record is the numoer of the record which Buffer is to be *
{* inserted after.
{* Exit Conditions : Rec Num will be the record number which *}
* was assiqned to Buffer in the file. Once a record is added*"

. {* to the file, its position will never change. C.

procedure insertf(file num : whichfile; var recnum : integer;
var buffer : max rec);

begin
openf(file_num);
with files[file num] do
begin

if next free<>end of list
then begin t There IS a free record

recs-avail:=recs avail-1;
Delete a record from the free list I

rec num:=del rec(file_num,nextfree);
{ And add it to the allocated list }
ins rec(filenum,recnum,lastread);
C Update the record pointers I
last read:=rec-num;
if first=end of list
then begin (This is the first record I

next _reac:llast _read:
4irst:=lastread;

end:
C Write Buffer to the file }
fread(fiienum,last_read,ouffer.true);

fwriteiile_num,1ast_read,buffer,false)Y
end-

end; with I
end; nserti

:. "":{ Procedure : DeleteF - Delete a record fror a file 'I
.* Parameters File Num

D--

LinkFile Module

* Entry Conditions : File Num is the file to be used. Last- *

{* Read is the record to be deleted. *}
{* Exit Conditions : Last-Read will point to tne record foll- *}

{* owing the deleted one. *}

**}*

procedure deletef(file num: whichfiie);
var rec num : integer;
begin

with files~file num] do
begin

if first<>end of list
then begin (There IS a record to delete }

recs avail:=recs-avail+1;
{ Delete the re:ord from the file }

rec-num:=del rec(filenum,last-readl:
if last read=endoflist

then begin
first:=end of list:
next read:=end of-list;

end;
C Add the deleted record to the free list I

ins-rec(file-num,recnum,nextjree);
next free:=recnum;

e ; end;

end;
end;

**I

{* Procedure : PosF - Position file pointers *}
{ .. * Parameters : FileNum, Rec_Num *1
{* Entry Conditions : File Num indicates the slot to use, and *}

%* Rec Num is the record number to which the file pointers *1
* will be set. *}

-j procedure posf(file num : whichfile; recnum : integer);
begin

with files~file num] do
begin

i ((recnum=first) and (not linked))
then resetf(filenum)
else next read:=rec num;

end;

* Procedure : CreateF - Create a new Index for the file '2
{* Paramaters : FileNum, How_Many
{. Entry Conditions : FileNum indicates which file to use, *}
C* and How-Many indicates how many records to allocate to the *}

i''" §* file. *1
Process : The links will be initialized as follows : al l of*)

D- 6

LinkFile Module
"* the records will be assigned to the Free list, and the

{* allocated list will be empty. None of the information in *}
{* the file will be erased, but it will not be accessable.

procedure createf(file num : whichfile; how many : integer);
var rec : integer;
begin

openf(filenum);
with filesfile-num] do
begin

first:=endoflist; nextfree:=O;
recs-avail:=how many;
for rec:=O to howmany-I do
begin

{ Set up the forward and backward links }
buffer.link.next:=rec+l: buffer.iinI.orev:=re:-l;
{ Make the next record of the Last entry point
to the First entry /

if buffer.link.next=how many then bufter.link.next:=O;
{ Make the previous record of the First entry
point to the Last entry - a circular list. }

if buffer.link.prev=-I then buffer.link.prev:=howmany-1;
fwrite(file num,rec,buffer,true);

end;
end;
closef(filenum);

end;

procedure erasef(file nu. : whichfile);
begin { erasef)
openf(filenum);
purge(Pbuff[files[file-num].buf-num]);

end;

modend.

NN N

W_ P, .~ . 4 , &-. ~ ~ . j ~ ~ .. * - - - * .*-

Menu Module

(* Menu Module - procedures for the maniOulation of menus

{* Menus may either be read directly from a file. or created ,}{* dynamically. In either case, the format of the menu in ,}{* memory is identical. The selection of an item by the user 4)(4 is done oy moving the cursor next to the desired item and *}{* pressing <RETURN>. Help is available for each item by *1.* pressing <!>. The menu structure allows for more than one ,}({ level. If the item selected has sub-selections, control *}" will not return to the user until a terminal item is selec-*1(4 ted.

module menu-module;
const

uparrow = $5B;
ownarrow

cursorleft = $18; (Define cursor motion commands I
return = $@D;
escape = $03; {cntl C)

null = $00;
huh = $3F;

maxitem = 28; { Maximum length of a menu item I
. menus = 2; (Menu file is file number two }type

{ Menu Type Definitions)
menu string = packed array[l..max item] of char;

item-ptr = ^menu item;
I. In Memory Menu structure I

menu-item = record
item text : menu-string; "Text User seesil
item code, (Code returned I
help index : integer;
next item, Pointer~previousitem,

(Pointer }
next-level : itemptr; { Pointer I

end;
(Menu File Record Structure }

menu-In record
menu number : integer; C Menu ID)
Dump down, f True if item has

Sub-selections)
bump up : boolean;f True if last item of

current level)
item text menu-string:item code,

helpinde: integer;
end:

whichfile = 1..10;
bores q, m, IN; Ouery, Menu, cr Hel; E:ox }

C Define current menu environment

% 4 e- " , 1 'A.!.
"

1':! .: *

'-

-

%

M'

Menu Nodule

var old : integer; C Last menu accessed }
first-item : itemptr; { Top of last menu I
top-list : itemptr; T Top of Current List I
list : itemptr; C Current position inside list
count : integer: (Number of lines in current level }
maxlines : integer; { Number of lines allowed in a menu }

C See TermlO Module for details on the following I
C Screen I/O Declarations)
external procedure goto_box(box : boxes; x,y : integer);
external procedure clear line(box : boxes; y : integer);
external procedure clear box(box boxes);
external function getcount(box : boxes) : integer;
external procedure writech(ch : char);
external function getkey : char;

L' See the LinkFile Module for details on the following }
external procedure resetf(file num : whichfile);
external procedure readf(file num : whichfile; var buffer : menuIn;

var eolf : boolean);

C See the Help Module for details on the following }
external procedure help(helpindex:integer);

{* Procedure : Erase Menu - Delete a menu structure from Heap *
C* Parameters : First Item *}
C* Entry Conditions : Firstjtem points to the first item of '}
C* the menu structure currently defined.
C* Process : Each item of the current level will be Disposed. *1
C* If the menu menu item has a sub-level, however, Erase-Menu *1
C* will be recursively called to erase that level first. *}
C* This will insure that the entire tree structure is erased. *}

procedure erase-menu(first-item : itemptr);
var current-item : itemptr;
begin

Make sure there is something to erase! }
if firstitem<,nil
then repeat

C Erase all lower levels of menu }
if first item".next level<>nil

then erase menu(first itemA.nextlevel);
current item: first-item;

C Point to the next item)
first item:=first item ".next item;
dispose(currentitem);

until first item=nil;
end:

te Function : Read-Menu - Read a Menu from the Menu File *I

D-:9

"I, .'' J ' ' ' ' '.. - ' ' ' -"" '
.

"",.":-", ' < ",.'."". - '.,

HMenu Nodule

"{ Parameters : Menu Number t}
C' Result : Pointer to first item of Menu *2
{(Entry Conditions : Menu-Number identifies wnich menu to *2
(* read. *1
S(Exit Conditions : The menu will have been read from the *1
{* Menu File into memory. The result of the function is a *}
ft pointer to the first item of the menu. *}
(fff*tf*tftff*ftftft*ftft**ft*f**f*******f*ftf***t*ft*******f*ft*******}

function read menu(menu _number : integer) : itemptr;
var menuline : menuIn; C A Line from the file }

item : item_ptr;
eolf : boolean;

(* Procedure : Read-Level - Read all menu items at current *}
level into memory

t* Parameters : Last Item, Last Line *}
** 6lobal Variables : EOLF *1
{t Entry Conditions : LastItem points to an allocated but *1
(a not yet initialized menu item. Last Line is the last item *2
(* read from the file. EOLF is the end of file indicator. *}
(* Process : First, the values in Last-Line are assigned to *}
(* Last Item. Then, a test is made to see if there are sub- *2
{(items under this one. If there are, then Read Level is *}
{(called recursively to read it. Finally, a test is made to 0}
{* see if this item is the last item at this level. If it is,*)
(f then control will return to the caller. *}

procedure read level(last item : itemptr;
last line : menuln);

var level,item : itemptr;
menu-line : menu ln;

done : boolean;
begin

done:=false;
repeat
C Assign File values to Memory Menu I
last itemA.item text:=last line.itemtext;
last item".item code:=last line.itemcode;
last.item.helpindex:=last_line.helpindex;
if lastline.bump down

then begin f There ARE sub-items I
{ Allo:ate a new item and point to it }
new(level); last -item .next -level:=level;

C Make it the first item of the next level.
level".previousitem:=nil;

C Pre-read the Menu File I
readf(menus,menu_line,eolf);

C Read in the rest of this level
read-level(level,menu_line);

"' * end

else last item',.ne:xt level:=nl;

D-40

0 -9 .X-i.*. aZ..vA... 2 % S - c. ~ - ' '~/* p . . .s ' .== * .'* ~ ' S So S- - S*-. * . - ° . ' °...°. = . .%'

w A.* - .-

.%

Menu Module

ii (eol4 or last_line.bumpup)
then begin { Done witn this level I

A% last item".next item:=nil:
done:=true

V.- end
else begin

J. { Read in the next item for this level I
readf(menus,menu_lineoeolfj:

{ Allocate storage ano point to it }
new(item): last -ite MA.next -item:=item;

item".previous item:=last item;
f Set up for next iteration 1

last item:=item; lastline:=menu line
end:

N, until done;
end;

begin f read-menu I
resetf(menus);

{ First, find the appropriate Menu in the Menu File I
repeat

readf(menus,menu line,eolf);
until menuline.menu-number=menunumber;

{ Allocate storage for and point to the first item I
new(item); item^.previous_level :=nil;
read menu:=ite;

t Read in the entire menu structure J
read level(item,menuline);

end;

{*Function : SelectMenuItem *

{*Parameters : Menu _Index *
({ Result : Item-Code of the selected terminal item.
{* Entry Conditions : MenuIndex points to the first item of *}
{* a Menu currently in memory. *1
{* Exit Conditions : The user will have selected one of the *1
(* terminal menu items (an item with no sub-items). Its code *}
(* will be returned as the value of the function. If a non- *}

-* terminal item is selected, then a recursive call to this *1
({ function will be made, until a terminal item is selected. *I**

function select menu item(menu index : item-ptr) : integer;
v-ar index :itemptr; Current Menu Item

character . char; Keyboard entry Character
selection integer; Selection code)
I integer; Current line number in menu box I

(4**** ************ ******************************** ** ********** ***

* Procedure : Menu-Display - Display all Menu choices at the *1
.* current level* * Process : The menu Doo area o4 the screen is cleared, ana *}

1-4

9,

U. ~ %

Menu Module

(the choices available at the current level of the menu are *
(displayed on sequential lines of the screen. The cursor is*,
~positioned to the left oi the first item.

procedure uenu display;
var index : item ptr;

I : integer;
begin

clear box (a);

index:=menu index;
repeat ec

CIndent eahitem to leave room for the cursor

write(indexA.item text);
C Point to thle next item at this level

l:=141; index:=index^.next-item;
until indexnil;
goto 1box (tu,,8);
writech(e').- writech(chr(cursorleft)),;

.i~. end;

begin C Select Menu Item
menu display;
index:umenu-index;

repeat
character:=get key;
case ord(character) of

uparrow :if index".previousjitemonil
then begin

writech(' '); writechtchr(curserleft));

writech ('*') writech (chr (cursorleft))
index: =index -previous itemt

end;
downarrow :if indexA.next-item('/nil

then begin
writech(' ');writechtchr(cursorleft));

writech(*'): writech(chr(cursorleft));
index:=indeN'.ne: t item

end;
huh begin

help(index-.help inde%);
menu di splay;
writech(?; writech(chr(cursorleft));
goto box 4.,,1I;
writech('*'); writech(chrcursorleft),1;

end;
X

4 return if inde Anext-levelmnil
then select menu item:=index'.xte. code

D-42

XZ* 7.e. %* %

jW% _107777 87U. T4Ub b ~ ~ .K (*. X -V -- . ~

Menu Module

else begin { recursive call }
selection:=select menu item(indey'.next le

vel);
if selection=O
then begin
{ Return from lower level with

no selection, so redisplay
current level I
character:=chr(null);
menudisplay;
index:=menu index

end
else select menu item:=selection;

end;
escape : select menuitem:=@;

end; (case
until ((character=chr(return)) or (character=chr(escape)));
clear-box(m);

end; C select menu item }

(* Function : Menu - Make a selection from a File Menu
{* Parameters : Current
{* Global Variables : Old, First Item
(* Result : Item Code of selected terminal item. *}

{* Entry Conditions : Current is the number of the menu to be *1
{* made the new current menu. Old is the number of the last *1

4, (* menu accessed, and FirstItem points to the old menu. 4)

.* Exit Conditions : Old is updated to Current, and the
(4 function returns the selected code. *
*************4********4**********************4 *************)*

function menu(current : integer) : integer;
begin

if old 0 current
then begin { A new menu must be read from the file I

erase menu(first item);
first item:=read menu(current);
old:=current;

end;
menu:=select menu item(first item):

end;

(' Procedure : Init List - Initialize a Memory List to empty *}
1* Process : A list is to be built in memory. It must first *1
{* be initialized. Any old list will be erased, and the size *
(4 of the list displayed will be set to fill the menu-box. *}

procedure init-list;
begin

erasemenu(top_list):
top_list:=nil; list:=nil; court:=O:

D-4:

*:.. Menu Module

- Get the size o' the Menu Box }
ma. _lines:=getcount(m);

end;

-" Procedure : Build List - Add an item to the Memory List *}
(* Parameters : Item Text, Item Code 4)

(* Global Variables : TopList, List, Count, Max-Lines
"(Entry Conditions : Item Text and corresponding Item Code *)
-* are to be added to the list in memory. *}
C{ Process : The item will be added to the list. If the 4)

C{ number of items in the current level exceeds the capacity *}
* of the menu-box, then a new level will be created. Count *}
{* maiantains the number of items in the current level, and *}
{* Max Lines is the size of the menu-box. Both are
C* initialized by InitList. Tne first call to tnis procedure *)
C* will define TopList, and position for subsequent calls *}
* ill be maintained by List. *}

4 (***********i**

procedure build-list(item-text:menu-string; itemecode:integer);
var entry : itemptr;

c : integer;
begin

new(entry);
.'if list >nil

then begin (This isn't the first element of the list I
list^.next item:=entry;
entry^.previousitem:=list;

end
else begin (This IS the first element of the list

* entry'.previous-item%=nil;
top_list:=entry;

end;
if count=(max lines-1)
then begin f Start a new level of menu }

entry'.nextitem:=nil;
new(list);
list^.previous item:=nil;
list"-.next-level:=nil;

entry .next_level:=list;
count:=O;
entrv".item text:='Rest of the list
entry".helpindex:=17;

end
else begin C Add to present level o4 mere

entry^.next-level:=nil;
list:=entry;

end;
list .item_text:=item_text;
hist".item code:=item_code;
list".help index:=le;
list'.nextitem:=nil: t In case this is the last one

a-44

Menu Module

count:=count+l;
end; C build list }

ii ************i4* **

C. Function : SelectList - Select an item from Memory List *}
GI Global Variables : Top List

S' (* Result : Item-Code of selected item.
(i Process After a list hes been built in memory through *2
{* calls to BuildList, an item may be selected with this
C* function. Since the Structure of both lists and menus is *}
C* identical, Select Menu Item is used to do the actual work. *}
*.**************************.*************************

function select list : integer;
begin

select list:=select menu item(top_list);
end;

{* Procedure : Init Menu - Initialize Global Variatles
{* Gioba4 Variables : Old, FirstItem, Top_List *}
{* Process : Prior to the first use of either a menu or a i}

{* list, the pointers must be initialized.
{*i**************ii****ii~**********i*i*******i***~****4*}

procedure init menu;
begin

old:=O; first item:=nil; top_list:=nil;
end;

modend.

-D-45

U , i ,, € € - ' ' ' " - '-" - - - ." - -. " "' ."" "- " -" . ." " " "-

ii

Help Module

{* Help Module - Provides information to the user about the *}
{* system. The help messages are stored in the Help File, and*'
{* are indexed. Each query or menu item has been assigned a *1
{* help index, which is used to look up the associated help *}

{* information.

($5+)

module helper;
const max help = 33; { Maximum length of a help message line)

helps = 1; { Help file is file number one }

type helpmsg = record
help_index : integer;
line : packed array[l..ma-_help] of char;

end;
whichfile = I..10;

boxes = (q, m, h);

(See the TermIO Module for details on the following
(Screen I/0 Declarations J
external procedure clear line(box : boxes; y : integer);
external procedure waitkey;

(See the LinkFile Module for details on the following I
{ File Access Declarations)
external procedure readf(file _num : whichfile; var buffer : helpmsg;

var eolf : boolean);
external procedure resetf(file-num : whichfile);

{* Procedure Help *}

(, Parameters : Help_Index
{, Entry Conditions : HelpIndex identifies which help message*)
{* to look up. *}
f* Process : The Help File is scanned until a matching index *
{* is found. This line and all subsequent lines are displayed*}
{* in the help-box area of the screen, until a line with a *}
(* different index is found. *1
*******f***4**t***************************f***f*t ******** }
procedure help(helpindex : integer):

Yar mess : help_msg;
eol' : boolean;

: integer;
begin

resetf(helps?;
{ Find the first line of the help message, ii there is one.1
repeat

readf(helps.mess,eolf;
until (mess.helo-index=help index) or eolf;

Disolay all lines with matching inde' numbers I

D-46

~ .~Help ModuleI

while ((not eolf) and (mess.help-index<helo index)) do
begin

clear line(h,l)
writemess.line) ; 1:=1+1;
readf (helps,mess,eolf);

end-,
clear -line~hl)
write('End of Help -Press any Key.');
waitkey;

end;

mod end.

D - 4 7

° .* * °- . * * : 7" " ." Il

Users Nodule

(* Users Module - Maintains the List of Users for the Command '3
Processor

., (**)i********e!~tee****t********t*t~***t******..***************j

module user file:
const max str = 38; { Maximum length of a string

*'.1 user-file = 3;
type
charstring = packed arrayl..maxstr] of char;

whichfile = I..1 ;
links = record

next,
prev integer;

end;

List of Users File Type Definitions 3
C All the information maintained about a user }

user-entry = record
link : links;
name : cnar string:
id : integer;

password : char-string;
end;

'!1 I Global Variable initialized by ReadArgs routine. See

the Argument Module for details. }
var next user : external integer;

(File Access Declarations)
C See the LinkFile Module for details on the following }
external procedure readf(file num : whichfile; var buffer userentry;

var eolf : boolean);
external procedure insertf(file num : whichfile ; var rec num : integer;

var buffer : user-entry);
external procedure resetf(filenum : whichfile);
external function roomf(file-num : whichfile) : integer;

{ *******,*,,***********,*,************,a*****a)**

{* Function : Lookup *}
{* Parameters : User Name, Password, ID *3
{* Entry Conditions : UserName contains the name of the user *3
{* as he typed it in. *3
C* Process : User Name is looked up in the User-File *}
* E;it Conditions : If the name is found, then Password and *2
1* ID are set to the matching entries in the f:le, and the *
(* function returns a TRUE value. If the name isn t in the *
C. list, the function returns a FALSE value. *]

iunction lookup(username : char string;
var password : charstring;

- var id : integer) : boolean:
var Lser-info : userentry; { File entry for comparison I

D-42

Users Module

eolf boolean; { End of List of Users }
begin

lookup:=false; { Haven't found him yet I
resetf(user-file);
repeat

readf(userfile,userinfo,eolf);
if user info.name=user-name

then begin C This user IS present in the file
password:=user info.password;
id:=user info.id;
lookup=true (We found him }

end;
until (eolf or (user info.name=user-name));

end;

C* Function : NewUserOK *
4* Entry Conditions : An Inquiry is being made to see if there*"
(* is room in the List of Users for another entry.
{* Process : The RoomF function is called to see if there is *}
{* any space available.
{* Exit Conditions : If there is at least one entry available,*)
{* then the function will return a TRUE value. Otherwise, the*1
{* result will be FALSE. *}

function newuserok : boolean;
begin

if roomf(user file)>@
then newuserok:=true
else newuserok:=false;

end;

{* Function : Add-User
C* Parameters : Name, Password
* Global Variables : Next _User

{* Result : UserID
{* Entry Conditions : Name and Password are to be added to the*)
C* List of Users.
{* Process : The Next User id will be assigned to this Name *]

P* Password pair and will be inserted into the List of Users. *
(* Ne.-tUser will be incremented. *}
{* Exit Conditions : The function result will be the id
C* assigned to the user.
**************************,***i***************i********

function add user(name,password char string) : integer;
var user-info : user-entry; File entry bu~fer }

r : integer; { Th2 physical re:ord number cf
the new entry - not used nere

begin C add user }
resetf(user file);

'{ Set up the Buffer
user info.name:=name;

~['-49

Users Module

user -info.password:=password;
Use the Next-User id and update it I

user into.id:=next user; next user:=next user*1:
add user:=user info.id:
mnsertf (user file,r,user info);

end; {add user}

modend.

0'

'D-5

.1c

P- I qf

Projects Module

(* Projects Module - Maintains the List of Projects for the *k

Command Processor *2

module projlist;
const max _str = 30; { Maximum length of a string 3

max item = 20; { Maximum length of a menu item }
C See File Access Module for description of Files Array }
projects = 4; C Slot number in Files Array for Projects}

g_dir = 7; (Slot number of Global Directory }

type char-string = packed array[l..max _str] of char;
menu-string = packed array[l..max item) of char:

whichfile = I-.0;

links = record

next,
prey : integer;

end;
{ List of Projects Type Definitions 2

state = (select-board, select-component, sel done,
connections, conndone, placement, place_done,

routing, routedone);
proj entry = record

link : links;

id : integer; (Project ID number 2
name : charstring; C Project Name)
desc : char string; (Project Description 2
completion : state; { State of Completion 2
user : integer; C Owner ID number 2

end;

C Global Variable - Initialized by ReadArgs routine in
Argument Module }

var next_proj : external integer; C Next project id to be assigned. }

C File Access Declarations 2
C See File Access Module for details on the following 2
external procedure readf(file num : whichfile; var buffer : projentry;

var eolf : boolean);
external procedure writef(file _num : whichfile; var buffer : prcjentry;

var writeok : boolean);
external procedure insertf(file num : whichfile; vat rec-num : integer;

var ouffer : projentry);
external orocedure deletef(fileanum whichfile ;

external procedure resetf(file num : wnichfile);

external function roomf(file-num : whichfile) : integer;

{ List building declarations I
C See Menu Module for details on the following

external oprocedure init list;
.~i external procedure buildlist(itemete:,t:menu string:,te- 2ode:inteer':

external function select-list : integer:

%

> .Z Projects Nodule

{ Returns number of Files Per Project - See Global Directory .

external function fpp : integer;

"{ Function % New P OK - Is there room for another project? *}
Ci Exit Conditions : If there is room in both the Global
C* Directory and the List of Projects, then NewPOK will be *}
"* TRUE. Otherwise, FALSE will be returned. *1

* $function new_p ok : boolean;

begin
i ((roomf(projects)>=) and (roomf(gdir)>=fpo))
then new_p_ok:=true
else new_p_ok:=false;

enC;

- Procedure Update Proj List - Update List of Projects
C, Parameters : ID, Completion '1
C* Entry Conditions : ID identifies the project in the List '}
(* of Projects to be updated, and Completion is the new value i)

C{ for the state of the project. *}
{* Process : The List of Projects will be scanned for project *
Ci ID. If found, its state of completion will be updated to *1
" Completion. Nothing is done if ID is not found. *1

procedure update_oroj_list(id : integer; completion : state);
var updated. eolf, writeok : boolean;

projdata : projentry;
begin

resetf(projects); updated:=false;
repeat

readf(projects,proj data,eolf);

,, if (proj-data.id=id)
then begin f We found it! 2

projdata.completion:=completion;
writef(projectsoro_data.writeok);

updated: ztrue;
end;,

until ec or updatec;
end.

* Function : SelectProject *1

C* Parameters : User
(. Result : One of the user's oroject IDs
C* Entry Conditions : User ijentiiies whose projects to look *.

C* up in tne List of Projects. '2

" .Process : All of User's projects are loo ed up in the List *.
- " of Projects and the following information is anse-te intc C
'i a list - oroject Name anc ID number. The Names 6:1l te t

SS

%C--'

"'4°" "S " . ° . " o " " - " - " •. . " , ' . ' * " " .- e"
o

'

p. Projects Module

{, displaved in a menu and the user will be asked to select *
{* one. *4

ft Exit Conditions The ID number corresponding to the user s'
wt selection will be the function result. If the User has no #2
{* projects in the List of Projects, then a value of Zero will*)
{t be returned. *}

function select_project(user : integer) : integer;
var item-text : menu-string;

c : ..max item;
projdata : proj_entry;

gotone, eolf : boolean;

begin
gotone:=false;
resetf(projects); initlist;
repeat

readf(projects,projdata,eclf);
if ((projdata.user=user) and (not eolif))
then bein

gotone:=true;
for c:=l to max-item do

itemtextlc]:=projdata.name[c];

buildlist(item-text,projdata.id);
end;

until eolf;
if gotone
then select_project:=select list
else selectproject:=U;

end;

*****t*************tttttt*ttt~*************t*t****

{f Procedure : New-Project - Add a new project to the List U
•t Parameters : Name, Desc, User, ID }
.* Global Variables : Next _Proj *
ft Entry Conditions : Name, Desc(ription), and User define the*)
ft new project to be added to the List of Projects, and Next- *)
ft Proj is the ID to be assigned to this project. *
f* Exit Conditions : ID is the Project ID assigned to the *1

.project. N

procedure newproject(var name. desc char-string;
user : integer; var id : integer);

var :ro._data : projentry;
r : integer;

begin
resetf(projects:;

- Load the Buffer :
rroj-data.name::name;
oroj-data.desc:=desc;

-"' proi data.user:=user;
pr j data.completion:=select board;

L Use the net sequential II and update it Y

5
.

",t' "o"(..' ." ".7F ' ". i2 . '. t. k ' t"tt t . " "...t q%" ,. . ?!'kA 'E"37' " "qb . 'r ' . .

.11

+ Projects Module

proj-data.id::next proj: next proj:=next_proj+l;
Return the new ID the the Caller)

id:=proj-data.id:
insertf(projects,r,projdatai;

end; L new project }

{* Procedure : Free-Project - Remove a project from the List *}
{* Parameters : ProjectID *1
r* Entry Conditions : ProjectID identifies the project to be *1
{* removed from the List of Projects.
{* Process : List of Projects will be scanned for ProjectID. *}
{* If it is found, it will be deleted. Nothing hapoens if the*f
(* project isn't in the list.

procedure free project~project id % integer);
var eoli : boolean;

projdata : projentry;
begin

if project-id<l

then begin
resetf(projects);
repeat

readf(projects,proj data,eolf);
if projdata.id~projectid
then deletef(projects);

until (eolf or (proj data.id=projectid));
end;

end;

{* Function : Get State - What is the state of the Project? *}
{* Parameters : ID *}
{* Result : The current State of Completion of the project II
{* Entry Conditions : ID identifies which project to look up I}**************************~*******************************}

function getstate(id : integer) : state;
var eolf : boolean;

proj_data : projentry:
beg'.

resetf(projects);
reoeat

readf(projects,proj_data,eo!):
iF (pro;_data.id=id)

4 then get state:=proI_dzta.completion;
44until (eolf or (projdata.id=idv):

end:

.* Procedure : Get Name - What is the name of the project? *
{* Parameters : ID. Name
* Entr. Conditions : ID identifies the project to loot. up *.

D-54

.~ 4 4 .-

f *~. Projects Nodule

-* Exit Conditions Name will contain the name of tne pro)ect*}
if ID exists. If ID isn't in the List of Projects, name *}

{* will be set to all spaces. *}

procedure get name(id : integer; var name : char string);
var eolf : boolean;

projdata : proj entry;
begin

name:='
resetf(projects);
repeat

readf (projects,projdata,eol;)
if ((proj data.id=id) and (not eolf))
then name:=pro jdata.name:

until (eolf or (proj_data.id=id)i;
end;

modend.

-D

'p

,i .
'A

%.i oo.1's

-, D 5

'"- Argument Module

A rgument Module -Responsible for passing arguments between*

{the Command Processor and the other layout modules. J}

module arguments;
const args = 5;

g_dir = 7;
type

wf = I-.I ;
{ Argument File Definitions

state = oselect -board, select_component, sel_done,

connections, conn_done, placement, olace_done,
routing, route_done);

modules = (cp, selecter, connecter, placer router. os!;
Arg Header contains information the CP needs to know.

arg header = record
projectid, tpCurrent Project I

user_id, (Current User I
error-code : integer;(Current Error

A completion : state; State of Completion
lastmadmodules % o e; Last module executed

end;
SavedState keeps track of the next Is to assign

saved-state = record

next_id,
nextuser,
next_pro : integer;
proj_info : arg_header

end;

filespec = arraye ..12 of char;

drive id = (A, B);
link = record

next,
end prev : integer;

end:

where = record

linked : boolean;
file name : filespec;
drive : drive id:
di skid,
recs avail,
rec_en,
first,
free : integer:

end;
arrentry = record

links : link;
ION case boolean of

false:(header : saved-state):

true:(file entrv : record
file nur : w*:

D-5t

.. * ,. ,... *... . .= -- .

": ... Argument Module

file Ioc : where;

end);
end;

G 6lobal Variables I
var nextproi, nextuser, next id : integer;

C See the LinkFile Module for details on the following }
external procedure readf f : wf; var buffer:arg entry; var eolf:boolean)

external procedure writef(f : wf; var buffer:argentry; var writeok:bool
ean);

* external procedure resetf(f : wf);
external procedure insertf(f:wf; var recnum:integer; var buffer arg_e
ntrv);
external procedure deletef(f : wf):

{ See the Global Directory Module for details on the following I
external procedure update file(m : modules; project : integer;

file num : wf; file loc : where);
external function get_loc(m : modules; project : integer;

var file num : wf; var fileloc : where) : boo
lean;

(* Procedure : ReadArgs - Read in arguments passed *}
{* Parameters : Info
(* Entry Conditions : The Argument File contains the current *1
f* state of the system.
{* Process : The current state is sent back to the Command *}
* Processor in Info. If the last module executed updated *}
(* any files, then the Global Directory has to be updated. *}~******4***

procedure readargs(var info : argheader);
var eolf : boolean;

buffer : argentry;
begin

resetf (args) ;
readf~args,buffer,eolf);

i info:=b.ffer.header.proj info:;
next proj:=buffer.header.next oroj:
nsxt user:=buffer.header.next user;
ne:.-;t d:=buffer.header.nextid;
rereat Z Read current state a4 files

reaf (args,buffer,eolf);
ii not eolf
ther' begin

deletef(args);
with buffer.fileentry do
Update the Global Directory to match I

4,,- .* ucdate-file(info.last mod, in o.project_id,
file num,file loc);

D0-57

q4 . , • . . •- . . .

Argument Module

,No end;

until eolf;
end;

" *Procedure : UndateHeader -Save current state *}

Parameters : info

{* Entry Conditions : Info is the current state of the system *}
{* to be save in the Argument File. *}

procedure updateheader(info arg header),
var eolf, writeok : boolean;

buffer : argentry;
begin

resetf(args)"
readi(args,buffereolf);
buffer.header.next Droj;=nextoroj;
buf !'er.header.next user=next user;
buffer.header.next id:=nex tid;
bufier.header.proj info:=info;
writef(args,buffer,writeok);

end;

~******************************** * *4* ***** *********

C* Procedure : LoadArgs - Load Argument File with files *1
{* Parameters : M, Project *}

Entry Conditions : Module and Project identify which files 4)

({ are to be loaded. *}
({ Process : The Global Directory is scanned for files with *}
(* matching Module and Project parameters. When found, their *)

(4 locations are inserted into the Argument File. *}

procedure loadargs(m : modules; project : integer);
vat buffer : argentry;

r : integer;
eolf : boolean;

begin
Reset the Directory and the Argument files, and skip the
Argument File Header record. }
resetf(gdir): resetf(args); read4(aras,buffer,eolf):
repeat (Scan the Global Directory)

with bufier.file entry do
eolf:=oet _oc(m,project,fiie num.file loc);

if not eolf
then insertf(arqs,r,buffer,;

until eolf;
d end;
/.'.

modend.

Of5
*' ,". ' '" '. ''. % ' " " . . , % " " ''' " " "L %

4.1*. 46 '7. . .- 77 - -7

C DiskList Module

ft DiskList Module - Keeps track of allocated and available tY
{* Diskette space.
(* A record is maintained for each diskette in the system. t1

f* Each diskette may be either assigned to a specific project,*}
{* or assigned to a user. If assigned to a user, then it is *}
ft avaialable for assignment to a project created by that user*)
{* only. t}

module disk list;
const max-space = 376; (Maximum space available in Kbytes }

disks = 6:
type

wf Z..1i;
links = record

next,
prey : integer;

end;
diskassgn = record

link : links;
disk_id, Which disk is it }

freespace : integer; C How much room is available }
case assigned : boolean of

true : (project_id : integer);
false : (userid : integer);

end;

C Global Variable initialized by Read_Args - See Argument Module for det
ails)
var next id : external integer;

{ File Access Declarations 3
See the LinkFile Module for details on the following }

external procedure readf(f:wf; var buffer:diskassgn; var eolf:boolean);
external procedure writef(f:wf; var buffer:diskassgn; var writeok:boole
an);
external procedure insertf(f:wf; var rec num:integer;var buffer:oisk-ass
gn);
external procedure resetf(f:wfY;

C See the DiskID Module for details on the following
external procedure new disk(diskad : integer)

f* Function : GetDiskID - Assign a project file to a disk C
I. Parameters : User, Project, SizeFi Result : Disk_ID assigned to file *2

{t Entry Conditions : User identifies tre owner of the file, *'
P' Froject identifies the project to wnicn the file belongs, *1

i* and Size is the number of KBvtes required by the file. C
f# Process : The Disks File is scanned for a diskette already
C' assigned to Project with enouqh free Loa:e c it I. c ne

9,

I.CY-C.:-..*

DiskList Module

{* can't be found, then the file is scanned for a diskette *}
{* belonaing to User. If one is found, it is assigned to pro-*}
-* ject. If the User has no free disks, then a new diskette *1
{* will be added to the system and assigned to the project. *}

function getdiskid(user, project, size integer) : integer:
var done, eolf, writeok : boolean;

disk-data : disk assgn;

r : integer;
begin

resetf(disks); done:=false;

repeat

{ Look for a diskette already assigned to Project with
enougn free space on it for the file }

readf(disks,disk data.eclf);

if ((disi _data.assigned) and
(disidata.project_id=project) and

(disl:_data.free-space>=size))
then with disk-data do

begin
,-v Found One! }

get disk id:=disk id:
free space:=free space-size;

.' writef(disks,disk data.writeoki;
done:=true;

end
{ Next, look for a free disk assigned to User }

else if ((not disk data.assigned) and
(disk data.user 4d=user))

then with disvoata oo

begin
{ Assign it to Project }

O . getdisk id:=disk id:
freespace:=maxspace-size:

assigned:=true;
projectid:=oroject;

writef disks,diskdata.writeok);

end done:=true;

until (eoif or done):

i; nct done

• thenr witt, disk data do
beoan

have to make a new disl.:otte a vaiirte
disk id:=ne: t id: nextm3:'nextit:

get disi. id:-disk id:
free soace:=max_space;

assigned:=true:
oroject id:=project;

., insertf(disksr,disPdata':
Label and identify the new dispette
new dist (disI Id :

4L- _

._ L- * t.*? ** 'I q ~ ~ . * # . :

%s .. DiskList Madule

end:
end;

* Procedure : Free Disk - Deallocate diskette space
{* Parameters : User, Project *}
x* Entry Conditions : Project identifies the project which is *2
S* is no longer active, and User identifies who the released *)

4%' (* space will be assigned to. *2

procedure free disk(user,project : integer);
var eolf, writeok : boolean;

disk-data : disk-assgn;
begin

resett(disks);
reoeat

readf(disksdisk_data,eolf);
if ((disk data.assigned) and

(diskdata.projectidzproject))
ts then begin

disk data.assigned:=false:
disk data.user id:=user;
disk data.free space:=maxspace;
writef(disks,disk data,writeok);

end;
until eolf;

end:

Nmodend.

D-61

4%Y

Global Directory Module
%. -6

C* Global Directory Module - Maintains the directory of all *
P* files that the system has knowledge of.

C* There are three types of files maintained in the directory.*)

C* The majority of the entries are for actual files associated*)
C* with either projects or layout modules. These entries *1
{* contain all the information necessary to locate and use the*)
(* file. The second type of entry is the "Template Entry." *1
{* A template entry is identified by a Disk_ID field with a *}
{* value of zero. Whenever a new project is created, a new *
(* file is created to match each template entry.
{* The third type of file entry identifies executable files. *}

{* These entries have the OS (Operating System) flag set to *}
{* identify them. There will be one entru corresoonding to *1
{* each separate module of the layout system. *

module global_directory;
const g-dir = 7;

dump = 8; { Temporary slot used for files }
type
whichfile = 1..1;
Global Directory Type Definitions }
(Which Module(s) can access the file?}

modules = (cp,selecter,connecter,placer,router,os);
(System Dependent File Specification)
filespec = packed array[1..123 of char;
C System Dependent Drive Identification }
drive_id = (A, B);
{ Where is the file located ?}

where = record
linked : boolean; C Linked or sequential access I
file-name : filespec; (Name of the File }

drive : drive_id; C Drive in which to
Mount Diskette }

disk id, Which diskette the file is on I
rec_len, C The record length (power of two)

I

recsavail, C Number of unused records in file

first, (Physical record number of f:rst
logical record

free integer: C Physical record number of
free soace list

end.
lin z record

next,
prey : integer;

end;
gd-entrv = record

links : l n:;
module 1 : pa.ked arravmoduies' o- ccolean:

.~....a......a...

Global Directory Module

C True value means the module has
access to the file '

file num whichfile; f Files Array Inde:,

project id, C FroJect to which file belongs. A
.'.."value of Zero indicates a file

that is used for all projects I
how-many : integer; { How Many records have

been allocated I

file loc : where;
end;

-N See the File Access Module for details on the following
external procedure statef(file num:whichfile; var first.free integer);
external function roomf(file num : whichfile) : integer:
external procedure resetf(file num : whichfile):

external procedure initf(file num whichfile; file loc : where);
external procedure closef(file _num : whichfile)'
external procedure close all(drive : driveid):
external procedure readf(file num whichfile; var buffer goentry;

var eolf : boolean);
external procedure writef(file num whichfile; var buffer : gdentry;

var writeok : boolean);

external procedure insertf(filenum : whichfile; var recnum : integer;
var buffer : gdentry);

external procedure deletef(filenum : whichfile);
external procedure createf(file num : whichfile; howmany : integer);

external procedure erasef(file num : whichfile);
" external procedure run-file(file-name : filespec; drive drive id;

disk id : integer);
external procedure init files;

C See the Menu Module for details on the following 3
external procedure init menu;

. See the TermIO Module for details on the following }
external procedure init term;

{ See the Disk List Module for details on the followinq

external function oet disk id(user, project. space inteoqrtinteaer:

* Procedure : New files *

4 Parameters : User, Project
{* Entry Conditions : User and Project identify a new Droiect *]
{* that the user is creating.
(* Process : The Global Directorv is scanned for Template *
{ Entries. A Template Exitry is identified by a value of 2eroa.
{, C in tne Disi._ID field. For each Temoiate Entry found,
* 4 ile is created and an entry is made in the Global *1

{* Directory.

procedure newfiles~usert prcject : integer);

1, VI ---7

1 6lobal Directory Nodule

var newgde :gdentry; { Buffer for New Entries}
r :integer; (R is the physical record number of

newly inserted entries - rot used here.)
maxkbvtes :integer; (MaxKbytes is the number of Kbytes required

by the
file.

maxbytes :real; The number of bytes required by the file
ecif : boolean; End oi Directory indicator I

begin
. resetf(g dir);

repeat

readf (q dir,newgde,eolf);

- ' ~ ~~te ma b egi " re Locte a Themplae Filyes reurdbItefl

with newgde.file icc do
begin

maxbvtes:•recdlen * newde.howmany;
- maxkbytes:=round(maxbytes / 124) - 1;

{ Allocate Diskette space ior the file '
disk id:=getdisk-id(user,protec:.maxkbytes);

K°-. end;
{ Assign the file to the Project I

newgde.projectid:=proect;
t Create the new file)
initf(dump,newgde.file_loc);

createf dumpnew gde.howmany);

NA closef(dump);
C Add it to the Directory I

., insertf(gdir,r,newgde);

end;

until eolf;
end;

44 C " ****** ** ************)**Fnto P FlsPrPoet*

% {*Function :FPP -Files Per Project
•{ Pesult : The number of files created for every oroject t}

function ipp integer;
begin

fpo:=3 Value depends on current system confcOuratlor }
end;

P Procedure : Kili M DE *

{, Parameters Proiect ID;. Entry Conditions : ProiectID identifies tne orcjet whose '

4{* files are to be removed from the Directory.

P, Process : Tne D:rectory is scanned loo,n 4c- Ertries with4
(* a Froject ID that matches the paramete,. Wnen f.ur:. those *}
.* Directory Entries are deleted and the ccrresponcin: file is*:

' " 2. urged from the system.

- .-

•. *,J

Global Directory Module

procedure kill cdetproject id : inteaer);

var gde : gdientry; { Directory Entry Buffer }

ecIf : boolean; C End of Directory flag I

begin f, kill)

if projectid<>O
then begin

resetf(g_dir);

repeat

readf(gdir,gde,eolf);
if gde.projectid=projectid

then begin { Found one! I
* deletef(gdir);

initf(dump,gde.file_loc):
erasef(dump);

end;

enduntil eclf;
' .. end:

end; kill I

*** *************I

(* Procedure : UpdateGD Update Global Directory *1
{* Process : Before the Command Processor Finishes execution, *)

(* the new status of all of the files must be recorded in the *1
U* Directory to keep it current. As records are added to or *1

{* deleted from the Command Processor Files, the First, Free, *1
U* and RecsAvail parameters are subject to change. *1

procedure updategd; { Must be called before CP terminates!'!)

.ar eolf, writeok : boolean;
gde : gdentry;

first, free, recs avail : integer; (Parameters to be updated I
begin

resetf(gdir);

repeat
readf(gdir,gde,eolf);

if ((not eolf) and gde.moduleid~cp]J

then begin
(Get the current state of the file I
statef(gde.file num,first.freei:

gde.file_loc.first:=first;

gde.filejloc.fre2:=free;

C Get the number o4 availanle records .

gde.file loc.recsavail:=roomf(gde.fllenut>;
writef(gcdir,ade,wrlteokM

enc:

until eolf;

*:-2, Make sure all the files get uodated in the HE directorv
cIcse all(A,:
close all(B);

end;

Global Directory Module

P* Frocedure Update-File Update a file s GD Entry *1
{* Parameters : File Num, Project. File Loc
(* Entry Conditions : File Num and Project identifies the 4ile*
(* whose Global Directory Entry must be updated. *}
(* Process : The file is located in the Directory and the *}
(* entry is updated with the information in FileLoc. *}
* ** **** ****4***4*4**** ****4*4444********** *4**

procedure update file(m : modules; project integer;
fileInum : whichfile; fileloc where);

var eolf, writeok : toolean;
gde : gdentry;

begin
resetf(gdir): writeok:=false;
repeat

readf(gdir,gde,eolf);
if (1qde.fiie num=file num) ano

(gde.projectia=project) and
(gde.module id[m3))

then begin { This is the Entry to be Updated }
gde.fileloc:=fiiejloc;
writef(gdir,gde,writeok);

end;
until eolf or writeok;

end;

{Function : GetLoc - Locate files for other Modules *

(* Parameters : Module. Project, File Num, FileLoc *
{* Result : EOLF condition *A
{* Entry Conditions : Module and Project identify wnich files *2
(4 are to be looked for in the Directory. *}
{* Process : The Directory is scanned from the current 4}

{* looking for files that belong to the Module and Project. *}
N* If one is found, its number and location are returned to *}

{* the caller. This function should be called repeatedly *}
{* until an End of File condition is signalled. *}
{* Exit Conditions : File _Num and File Loc are returned, and 4)

{4 the function returns a FALSE value, if a file was loceted *}
(* tnat belonged to the module and project. If the End of
.{ "ile is reached, then tne iun::ion returns a TRUE value. *)i *********************4*4*****4************.***** ********

fvn:tion get loc(m : modules; project : integer:
var file num : whichfile; var 4±e ±o: wherel bcolean:
'&r eolf boolear;

.N
ge gdentry;

repeat
readi(g_dir.gde,eo1i);

until teoli or
((ode.module id[m]i an:

a((de.projectid=oroject, or tooe.oroject id=V)):
=iernum:=qde.file-num:

4.-.,

%-

I-s.

Global Directory Module

file loc:=ade.fileIoc;
get_ oc:=eolf;

end;

{* Procedure : Init All Initialize Everything' *1
{* Process : After some Miscellaneous initialization routines *}
{* are called, the Global Directory is Initialized. Then all *)I* of the Command Processor Files are looked up in the }

{* Directory, and they are initialized. No access may be made*}
{* to a file until it is initialized!

procedure initall;

var file loc : where;
eolf : boolean;
gde : gdentry;

begin
init files; I Set up the file array with all files closed}
init menu; C Set the menu pointers to nil I
init term; f Perform all necessary terminal setup, if any }
C The global directory must be initialized 1
with file loc do
begin
{ You have to know where to find the Directory }
disk id : ;
file-name : 'GLOBAL.DIR
drive : A;
recjlen : sizeaf(gdentry);
linked := true;
first :0 8; (This should'nt change'!'!

end;
initfig_dir,file_loc);

{ Free and Recs Avail parameters still not set }
resetf(g_dir);
{ Look up Directory entry in the Directory to set them }
repeat

readf(gdir,gde,eolf);
until gde.filenum=g_dir;
closef(g dir); initf(gdir,gde.fmlejloc):

Now the rest of the files can oe located }
resetf(g dir);

repeat
readf(g_dir,gdeeolf)
if ((not eoli) and

(gde.file numK.>gdir) and
(gde.moduleidlcol) and
(gde.project_id=0))

then initf(gde.flenum,ode.fiie locj:
until eol4;

end;

D-67

se~e~e~e s .* . ,.~s ,-.e ""

-- .

'.. Global Directory Module

{. Procedure : Exec - Execute an Operatir.g System Program
C* Parameters : Module
{* Entry Conditions : Module identifies the Program to oe

(* executed. The Command Processor will no longer be in
{* control.

procedure exec(m : modules);
var gde : gd entry;

eolf : boolean;
begin
{ To execute OS, all that is necessary is to return from

this procedure, after which the program will end!
if m(>os
t Otherwise, the proper module must be executed. }
then bein

resetf(gdir);

repeat
readf(g_dir,gde,eolf);
if (gde.module id[m] and gde.moduleid[osl)
then with gde.file Ioc do

run file(file name,drivediskid);
until eolf;

end;
end; C If you get to here, then the OS will take control. }

modend.

..-..

Command Processor Module

{* Command Processor Module

f* The following files must exist on the master CP disk
f* (Disk number 1): *1
f* GLOBAL.DIR - describes the parameters of the rest
f* of the files
{* MENUS.CP - Contains menus I and 2*
ft (See SelectOption and GetNextModule
{* for menu contents)
{* HELP.CP - Contains all of the system Help *1
{*(t messages.

{* USERS.CP - A list of all Users and their ID's *1
{* PROJECT.CP - A list of all Projects and their ID's

* f* DISKS.CP - Contains Diskette space allocation *}
t{ ARGS.CP - The argument file is the means of *]

ft {* communication between the system *}
modules. It also contains "Current *}

ft { State" information that must be saved
f* between Command Processor sessions.
f{ In particular, the Command_.Processor *}
ft Global Variables are initialized with t)

ft the following information:
C' project_id - Number of Last project accessed *}
ft user id - Identity of current user *}
{*f error code - Error conditions of other modules
f* completion - State of completion of project _id *}
f* Exit Conditions : The Global Directory and Argument
f* Files are updated, and either the program is exited, or *}
f* the next layout module is invoked.

program commandprocessor;
const maxprompt = 30; { Maximum length of a prompt }

max num = 10; (Maximum length of a number }
max-str = 30; { Maximum length of a string I

type
(Query Type Definitions }

unit = (mils, inches, mm, scalar):
promptstring = packed array'l..maxprompt] of char;

p-len = l..maxprompt;
position = 1..mar str;

stringcase = (upper, lower, none):
char-string = packed arrav[1..max str] of char:

yesno = (yes, no, idunno':
boxes = to, m, h):

Global Directory Type Definitions J
moduies (cp,selecter,connecter.placer,router,os,undefinedj;

{ A list of the possible values for the ne:xt module
to be executed -

q..'. A* . . ***0 *.P J- .0 N

Command Processor Module

t List of Projects Type Definitions }

state = (select-boara, selectcomponent, seldone,

connections, connone, placement, placeDone.

routing, routedone);
{ A list of the possible values for the state o

completion of a project }

(Argument File Type Definitions)

(ArgHeader defines the information the Command Processor reads
from the ARGS.CP file to initialize the global variables.1

argheader = record
project id,

userid,
errorcode : integer;

completion : state;
next mod : modules;

end;

var C Global Variables I
current : argheader;

valid : boolean; t Indicates the validity of a user I

(Query Declarations)
C See the Query Modules for an explanation of these routines I

external procedure querystrtprompt : promptstring;
prompt_length : p_len;

min, max : position;
var answer : charstring;
var string length : position:

makecase : string_case;

helpindex : integer!;
external procedure queryyn(prompt : promptstring;

** prompt_length : plen;

var answer : vesno;
helpindex : integeri;

{ Screen 1.0 Declarations }

See the TermIG Module for an explanation of these routines. I
external procedure goto box(box : toxes: xy : integer):
external Drocedure clear line(bo : boxes: y : integer);
external procedure clear box (box : boxes);

external function cet-count(box : no'es) : integer;

e::ternal procedure nput-errorterr-ms : char strinci:

* See the Global Directory Module for details on the icilcwing

external procedure :nit all;
external procedure new filesiuser, oroect : inteaer):

external procedure killgdekproject : integer):

external procedure updategd;

-. external procedure exec(next mod :modules);

See the Users Module for details on the followin

D-70

a- 1 ~ * - -r -7 7. 7. U -.- -

U.

Command Processor Module

external function lookup(username char-string;

var password : char string:
var id : integero : boolean;

external function add user(username,password:cnar_string):xnteger:
external function newuserok : boolean;

-See the Projects Module for details on the following I
external procedure updateprojlist(id : integer; completion :state);
external function selectproject(user id : integer) : integer;
external function getstate(id : integer) : state;
e:ternal procedure getname(id:integer;var name:char-string);
external function new_p_ok : ooolean;
external procedure newproject(var name, desc : char string;

user : integer; var id : integer);
external procedure freeproj(project_id : integer);

C See the Disk List Module for details on the following .
external procedure free disk(user, project : integer);

'See the Menu Module for details on the 4ollowing function I
external function menu(num : integer) : integer;

(See the Argument Module for details on the following I

external procedure readargs(var info : argheader);
external procedure update-header(info : arg_header);
external procedure load argslnextmod : modules; project integer);

j * Procedure Name : Resolve
{* Parameters : Error Code *3
{* Entry Conditions : Error Code identifies a particular error*)
{* condition that another module was unable to handle. *1
C, Exit Conditions : If possible, the error condition will be *q
• corrected and the error code will be reset to zero. *2
{* In the current implementation, this is a dummy routine, but*)
C' it is provided for future expansion. *3

procedure resolve(var error-code : integer):
begin

write('***** ERROR ,errorcode:3, *** ;
error-code:=@

end;

C* Procedure : GetIdentity
i* Parameters : ID, Valid *3

4, Entry Conditions The identity of the user is unknown. 43

, Exit Conditions : ID will identify the user it he exists. 41

C' Valid is a flag that will indicate if the user ex:ists. *]

orocedure get_identitv(var id:integer: var valid:ooolean);
ccnst no-oassword

0-71
i),",¢wT4'),;'" W -.W' -; '' -? " ", , . -; -"Z,._,,, ' . L ,' "." " '" ."'.,.. , "._." " ",.L' . :..iN

Command Processor Module

var name, The name of the user I
password : char string; { His Password }
name len : position; { The number of characters

in the user's name I
found : boolean; I A Flag indicating whether

or not the user already
exists)

answer : yesno; { Will indicate if the user
typed his name correctly }

{* Procedure : Create _User *
{* Parameters : Name *}
{* Outer Level Variables : Password, ID, Valid
{* Entry Conditions : Name was not found in the List of
{* Current Users.
{* Exit Conditions : If there is room for another user in the 41

{* List of Current Users and the ooerator indicated a desire *}
(4 to become a user, then ID and Password will be updated and *}
(4 Vaild will be set to true. Otherwise, Valid will be false.*)

procedure crEate user(name : charstring);
var answer : yesno; (Will indicate whether or not

the operator wishes to become
a user }

*4*4**********4*44*****44********44444*444444***l*

{* Procedure : Get Password
{* Parameters : Password
{* Entry Conditions : A new user must be assigned a Password C,
{, Exit Conditions : If the user indicated that he didn't wapt*}
{* a password, then Password will be set to all spaces. *}

(* Otherwise, Password will be set to whatever character
(* string he entered. *}

.4 (*************4*4****** * ****4*4* **44**444}**

procedure getpassword(var password : char string):
var answer : vesno; { Will indicate whether or not

a password is desired I
len: position; { The length oi tne password I

becin
queryyn(*Oc you want a Password?

answer,4);
if answer=ves then

ouervstrt'What will your Password be? '.27,
5,20,password,len none .5)

else password:=no_password;
ena; I getpassword I

begin C create user I
_ if newuserok There IS room for another one
j then begin

-%A7 "

-.s Command Processor Module

query_yn(Do you wish to become a user? 1,2,

.:.- answer.S1t
if answer=yes

then begin (A New UserY' m}

S. getpassword(password);
v% V id:=add user(name,password);

valid:=true:

end
else valid:=false;

else end
else input-error('No More Room for New Users' ;

end; { create user }

{* Function : Verify Iaentitv *
.. Parameters : Password *

el {* Entry Conditions : Tne users name was locatea in the List *}

{* oi Current Users, and Password contains the password that *)

{* the user originally specified.
{* Exit Conditions : If the comparison string entered by the *}

(* user matches his original Password, or if the original is *}

.{ all spaces, then the function returns a True result. *}
(4 Otherwise, a False value is returned. The user get three *}
(* tries to get the password right. *1

function verifyidentity(password : char string) : boolean;

var testword : charstring; t The string to compare with
V the original Password]

len : position; C The number of characters in

0" testword)

tries : integer; { Counts the number of

attempts to match }
valid : boolean; C Indicates result of com-

parison }
begin

if password=no-password

then verifyidentitv:=true
else begin

tries:=C; valid:=fal=-e;
repeat

quervstr('Prove It' ',.

S.2,.testwcrd.len.nons.6);
ii testword=pessword the" 'aaiC:=true;
tries:=tries+l:

until (valid or (tries=f)l:
verify identity:=valid;

end

end; Z verify.identit,

- .4 begin C getidentity }
repeat

que-,stri'Who Are ou ,

Command Processor Module4."

2,20,name,namelen,upper,1);
found:=lookup(name,passwordid); answer:=yes;
if not found

then begin
clear line(q,-l);

.write(name);

*/ queryyn('Is your name correct? '41,
answer,2);

4-A clearjline(q,-1);
end;

until answer=yes;
if not found

then create user(name)
else valid:=verifyidentity(password);

end; (getjidentity }

{* Procedure : SelectOption *:
{* Parameters : User ID, ProjectID, Completion, Next-Module *1
{* Entry Conditions : User ID identifies the current user. *1
C* Exit Conditions : Project_ID, Completion, and Next Module *3
C{ will have been updated to reflect the current status of the*)
{* project selected by the user. 0

procedure selectoption(var user-id : integer;
var projectid : integer;

var completion : state;
var next module : modules);

- var name : char-string; C Will contain the name of the
current project)

selection : integer; { The Menu Selection Index I

SFunction : Get Next Module *}
{* Parameters : Completion 0}

U' Entry Conditions : The user has selected a project and *2
U' desires to work on it. Completion identifies the current *2
C* state of the selected project. *1

Ct Exit Conditions : The function result is the Next Steo in '2
(* Layout Process that the user has selected. A given step *
t* may be repeated as often as desired, but may only be per- *J
i* forned iH all of the previous steos have been completed. *1

function get next module(:ompletion : state) : modules:
var selection : integer; (Will contain the selection

from Menu 2)
answer : yesno; C Will contain response to

*-query on repeating a step2
highest, next: modules; (Will identify the highest

allowable step and the

.,- 74

Command Processor Module

user s selection }
begin (getne:t_module 3

case completion of
select board, select component highest:=selecter:

seldone, connections highest:=connecter:
S conn done, placement : highest:=placer;

placedone, routing, route-done hi hest:=router;
end;
repeat

repeat
.Jp selection:=menu(2);

I 1 Selecter
2 : Connecter
3 : Placer
4: Router }

case selection of
I : next:=selecter:
2 next:=connecter;

next:=placer;
4 next:=router;
end;
if next>highest
then input error('You Can''t do that yet'

until next,=highest;
J- if next<highest

then queryyn('You want to redo this step? ',27,

answer,16)
else answer:=yes;

until answer=yes;
get next module:=next;

end; C getnextmodule }

{Procedure :Create -Project
{*{Parameters a User, ID, Name **
{* Entry Conditions : The user has decided to create another *}
(4 project. User is the identification number of the current *}
(* user to whom the new project will be assiqneo.
t* Exit Conditions : If there is room for anoter project, *J
C* then ID will contain the project identification number tnat*'
{* was assigned to it. and Name will contain the user assigned*:
{* name. If there is not room for another project to be
* defined, then "D will be zero. }

procedure createproect(user : integer; var id : integer;
var name : charstring);

var desc : char-string; C User description of project }
ans_ler : position: C Number o! cnaracters ir name

begin
if new_p-ok
then begin { There IS room for another oro~ect)

que-vstr('Wnat do you wart to call it? ,2e.q2.

D-75

,2 N Comeand Processor Module

name,ans_len.none,-10!;
querystr(°Give a brief description : '2,.

desc,ans_len,none,21);
."S Add the project to List of Projects}

new_projectiname,desc,user,id);
f Allocate Diskette space for the project}
new-files(user,id);
end

else begin
inoutn error('No More Room for Projects')

id:=8;
end;

end;

CmnProcedure : Kill-Project
nParameters : User, Project

Entry Conditions : The user has edecid to oes:rov the, *.
currently selected project identified by Project. *
Exit Conditions : The project will have been removed from
the List of Projects and the diskette soace poll ave been*

J{* de-allocated. Also, Project will have been reset to zero *
{to indicate that there is no longer a current project. *

procedure killproject(user:integer; va project:integer);

begin
Remove the Project from the Directory
kll lgde(project);

fPrmRemove the project from the List o4 Prolects }
ftcu free_proectproject);

t De-allocate the Diskette space we
free disk(user,project);
t Reset to No Current Project.
project:=i;

begin t Select Option

if projectfidre y

the!r, beoin '% There 1S a Currentlv selected- orz.iect
Mae sure the List of Proects is Uv tI at 9

uf ate e projlist;pro, t

p etrc nameroject_id,name;
End

else name:= No Current aroet selecte. or;lect

next module:=undefined;
repeat

cieer-line(q,3); write(fCurrent Project :'.name):
seiection:=menu(1);
i I : Continue Project

Switch Projects
: Create New Project

D Liscard Project

L- 7

W -N

Command Processor Nodule

5 : Exit to Operating System }
:ase selection of

' I : if proiect-id=O

then input error('No current project selected')

else next module:=oet next module(completion);

2 begin
project-id:=selectproject(userid);

if project id=0

then input error('You have no Projects aefined' ')

else begin
completion:=get state(project id):
getname(projectidname);

end;

end;
create-project(user_id, projectid, namei;

4 : if project id<>O
then begin

kill_projectkuser id, projectid):
*ame:=No current project selected. ;

end;
5 begin

next module:=os;
" project id:=O;

userid:=@;
end;

end;
until next module<undeiined:

end; { selectoption I

{* Procedure Execute _Next
(* Parameters : Module, Project
{* Global Variables : Current
.* Entry Conditions : Module and Project will identify the

., {* module whicn is to be executed next.
{* Exit Conditions . The selected module will be executed *1
{* after the Argument file is set up witn the names o; all *}
{* of the files reauired by the module. The Directory will *I
{* have been updated to reflect any changes in the status of *}

{* all the files used t, thE command processor.
* Note that ccntrol will NOT rEturn to tne caller' *

procedure e;tecutenexttnext mod : modules; project .nteger.;
be p i

u:oate. heaoerkcurrent':
loadcargsinext-modproject):

u.0oategd: * Update Global Directory and Close all f{les
e::ec(ne:xt_mod); (No direct return irom this vrc:eJure,

end;

: begin U command processor }
init all-

5.;, '

.5 ". "4, . ' .".",. ." . . .: :' '.'"""- .;" 2 '.-;..." ".' .,.v ;; v .Z'.

., Command Processor Module

read argstcurrenti z

-,-, with current do
i2 ' ,epeat

i i error code,">0

"" then resolve(error_code);
:' if kt user_id=O) and (error-code=O))

then get_i dent ity (user_id, val id)
V Vtelse valid:=true;

.if (valid and (error -code-@))

-. then select -optioniuser_id, project id, completion, next mcd);
iC error code=@

", then execute next(next_mod, project_id);

wiuthil retd

il error code=
end.

te g

ee adr

if (ae(

unti e o

FD-RI38 427 PRINTED CIRCUIT BOARD LAYOUT BY MICROCOMPUTER(U) AIR 3/3
FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF
ENGINEERING E N KRAUSMAN DEC 83 AFIT/GE/EE/83D-35

UNCLASSIFIED F/G 9/5 NL

mlllllEEElIElElEEEEEEllEEEI
EEEEllEEEElhEE
llEEEEEEEEEEEEE
EEEEEEElhEEEEE
ElEElhEEEllEEE

A,. .. i,

w Ir

S * O,..

Man

% ~1.2 164 1.
"EIl mlii

e.4.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A
.55

%% % ~

%%

, ,/ " "..- -%" ""' -.

% -- % .-- %."

%~. % %

% %~

APPENDIX E - LNN Source Code

program termio;
:onst q_x

qV. = 12;
q_lines 3;
mx = 5;

m-y 1;
m lines =1;
h-x =30;
h_y = ;
h lines 10;

clear to-eol = °#IE';

max- prompt
=308,

type boxes = (q, m, h);
charstring = arrayll..maxprompt] of char;

procedure gotoxy(x,y : integer); external;
procedure writech(ch : char); external;
function getkey : char; external;

procedure wait-key;

var dummy : char;
begin

dummy:=getkey;
end;

procedure gotobox(box : boxes; x,y integer);
begin

case box of
q : gotoxy(q_x+x,q_y+y);
a : gotoxy(m_x+x,m_y+y);

h : gotoxy(hx+x,h y+y);
end;

end;

procedure clearjline(box : boxes; y integer);
begir

goto box(box,Z,y);
writech(clear to eol);

end;

E-1

.i ." TerelO Nodule

procedure clear box(box : boxes);
var line, lines : integer;
begin

case box of
q : lines:=q_lines;
a : lines:=m-lines;
h : lines:=h-lines;
end;
for line:=@ to lines do clear line(box,line);

end;

function getcount(box : boxes) : integer;
begin

case box of
q : getcount:=q lines;
a : getcount:=m lines;
h : getcount:=h lines;
end;

end;

procedure input err(err msg : charstring);
begin

clear line(m,nlines+l);
writeCerr -msg);
write(' Press any key.');
wait_key;
clear_line(m,mlines+l);

end;

begin
M$ULLLBODY)

end.

E-2

%V-, P, ' ,. -

' -.,.,-,'.'.' ' ' .

QueryYN Module

: program queryyesno;

const
cursoron =
cursoroff = '#@F';

return = '#ID';
escape = '03"1 (cntl C

maxprompt = 30; { Maximum length of a prompt)

type
Q Query Type Definitions)

prompt string = packed array[l..maxprompt] of char;
pj en = l..max _prompt;
yesno = (yes, no, idunno);
boxes = (q, m, h);

procedure clear box (box : boxes); external;

procedure gote-box(box : boxes; x,y : integer); external;
procedure writech(ch : char); external;
function getkey : char; external;
procedure help(help_index : integer); external;

procedure queryyn(prompt : prooptstring;
promptjlength : p_len;

var answer : yesno;
helpjindex : integer);

var character : char;
i : plen;

E

T-I474w7

QueryYN Module

begin t qvery yn
answer:=i dunno;
clear -bo.(q); writech(cursoroff);
goto-bo;.(q,l,U);
for iz1 to promptjlength do

writech(promptE ii);
gotobox(q,@,I);
write('Please Respond with Yes or No.');
repeat

goto~box (q,promptjlength,I);
character:=getkey;
case character of

'Y','y' : begin
answer: =yes;
write(' Yes1

end;
N''n' : begin

answer:=no;
write(' No '

end;
'?' : begin

answer:=i .dunno;
write(' I Don''t Know'');
help (help index)

end; end;

until (characterzreturn);
writech(cursoron);
clear box (q);

end;

begin
CSNULLBODY)
end.

dE-

IT P.171 ,IT76.T TI3. 3; 13M-J -

GueryNum Module

N program query numeric(input,output);

(This is the numeric entry portion of the Query Module I

const
leftarrow = '008'; (Define arrow keys I

rightarrow = '669';
uparrow a '15B';

downarrow 'SA';
cursorleft = '#18'; { Define cursor motion commands }

4 cursorright a 6819';
cursordown = 'i1A';

cursorup = '61B;
cursoron = IE';

'-N cursoroff ='6F';
ins = '13*; {cntl S) (Define Editing Commands I

del = '#04'; (cntl D)
change = #15'; {cntl U)
return = '#@D';
escape = '#03'; (cntl C)

null = '#W;
maxprompt = 3@; { Maximum length of a prompt I

max num = 10; (Maximum length of a number I

type
SQuery Type Definitions I

unit = (mils, inches, me, scalar);
0promptstring = packed array[l..maxpromptl of char;

p_len = I..maxprompt;

boxes = (q, m, h);

C Screen I/O Declarations I
procedure goto box(box : boxes; x,y : integer); external;

procedure clearjline(box : boxes; y : integer); external;
procedure clearbox(box : boxes); external;
procedure writech(ch : char); external;
procedure wait_key; external;
function getkey : char; external;
procedure help(help_index : integer); external;

procedure querynum(prompt : prompt string;

promptlength : p_len;
Smin, max : integer;

var answer : integer;
units : unit;

helpindexi integer);

E-5

L- 2 : ' 9 € w . .. 4 . * r'., '-S.-. *** .P*' :* 2,, '.-s% -_ *..* 5 -''* %- '-- .

QueryMum Module

~ var range violation,
helprequest,
unit-change : booleai;

i : 1..max prompt;
response, dam, dmax : real;

dummy : char;

procedure getnuaber;
type pos = 1..maxnum;
var character : char;

point, negative : boolean;
number string : packed array(I..maxnuml of char;

current~posi tion,
point position,i : pos;

procedure shownumber;
begin

gotoabox(q,currentposition+promptlength+,0);
for i:=current position to max num do

writech (number stringfi J);
gotobox (q,current.position+promptjlength+I,0);

end;

procedure sign(ch : char);
begin

goto box (q,prompt length+1 ,@);
writech(ch';
gotobox (q,current~position+prompt lengthl ,I)

end;

procedure adddigit;
begin

number string~currentposition:=character;
writech (character);
if currentposition~max-num

then current.position:=currentposition+I
else writech (cursorleft)

end;

1%

VA

Loa

QuaryNum Module

~ procedure insertdigit;
begin

if point
* then if pointposi tion~zcurrent posi tion

then begin
point~position:=point.position+1;

*1~ if pointposition>max~num
then paintt:false

end;
if currentposition<nax-num

then for i:=max num downto currentpotin1d
nueber-string~i3:=number-stringUi-1J;

number -stringt current position3:=
show-number

end;

procedure deletedigit;
begin

if point
then begin

if current positionapointjposition
then point:=false;

*if pointposition~currentposition
then pointposition:=pointposition-1;

end;
if current position~eaaK ua

then for i:=currentposition to max-num-I do
numberstringU]:=number-stringti+l];

number -string~max num3:: *

show-number
end;

procedure convert;
var power :real;

'E-

3 E~V

iluery~us Module

procedure getintpart(position: pos);
var i :integer;
begin

power:= 1;
for i:=position downto I do

if (number stringEi3>='O' and
number..stringti (='9')
then begin

response: =respanse+power*
(ord(number -stringli3)-ord('B9i);

power: powerl@

end; end;

procedure get fracpart(pasition : pos);
var i :integer;
begin

power:@. 1;
for i:=positian to max-num do

if (numberstring~i]>='I' and
number string~ij<='9')
then begin

response: rhsponse+power*
SC(ord(number-stringli])-ord('')

power: =power/18
end-,

end-,

begin (convert
response:=O.O;
if not point

then getintpart(maxnum)
else begin

if pointposition>1
then get mnt part(point position-i);

if pointpositian<max-num
then get frac~part(point position+1)

end;
if negative

then response:=respanse*(-1);
end;

446

Guery~us Module

begin C getnumber
current poition:=1;
for i:1l to max num do number string~i3:=' '

show-number;
helpyrequest:=false; unit..change:=false; point: :false;
negati vet fal se;
repeat

character:=qetkey;
case character of

* begin
* if (point and (current..position~pointposition))

then point:=false;
add -digit

4 end;
if not point

then begin
point position:=current position;
adddigit; point:=true

end;
- begin

negati ve: true;
a sign('-')

end;
~+:begin

negative:=false;
sign('

end;
help request: true;

ins : insert-digit;
del : delete-digit;

change : unit-change:=true;
leftarrow : if current position>l

then begin
currentposi ti on: =currentposi ti on- I;
writech (cursorleft)

end;

rightarrow :if currentposition'max num
* then begin

currentposition:=current-oosition+l;
writech (cursorright)

end;
return : convert;
end f case)

until (:haracter=return or character='7' or character~change);
end; getnumber I

GueryNus Hrdule

function to-inches(ails : integer): real;

begin tojinches:=mils/1000.0 end;

function tomsm(mils : integer): real;

begin to~am:=t ojnches(mils)*25.4 end;

begin { querynum
clearbox (qi;
repeat

range..violati on:=false;
clear line(q,l);
for i:=1 to prompt length do writech(prompti3);
for i:1l to max nun do writech()
case units of

4 inches: begin
write(' inches
d -min:=to -inches(min);
d max:=to inches(max);
clear line(q,1);
write(URange: ',d.~min:7:3,' to ',dmax:7:3)

end;
mm: b egin

write(' aillimeters'i

d rintevane ,dumin:n,t;dax

d a:=tmi;dmaxa;
clear line(q, 1);
writeTURange: ',djIain:7:3,' to ',d~max:7:3)

3end
oils begin

wr t (mils.S *

QueryNum Module

getfu ab er;
if unit -change

then case units of
scalar: units:=scalar;

mils: units:=inches;
inches: units:=mm;

me: units:=mils;
end;

* if help..request
then help(helpindex);

if (not (unit change or help request)
and (response<d~min or response~d-max))

then begin
clear _ line(q,2);

inue');write(rResponse not within range. Press any key to cant

wait key;
clear line(q.2);
rangeviolation:=true

end;
until (not (helpj-equest or range-violation or unit-.ch ange));
case units of

mils,scalar : answer:=round(response);
inches : answer:=round(response*1000);

end;as : answer:=round(response*1flh/2.54);

cl1ear box (q);
end;

.gin
CS NULL DODY)
end.

E-1

PMIME

* , . - -°_ - , , . - - _ _ . _ _. - --- , - - i - ,-.-. '. . - ' -" - .-.

GueryStr Module

program querystring;
' This is the string entry portion of the query module. 1
const

leftarrow = '#08'; (Define arrow keys }
rightarrow = '#09';

uparrow = #58';
downarrow = #IA;

cursorleft = #18'; { Define cursor motion commands I
cursorright = #19';
cursordown = #1A ;

cursorup = '#1B';
cursoron = ABE';

cursoroff = 'OF';
ins = #13'; {cntl S) { Define Editing Commands I
del = A04'; Ccntl DI

return = #@D';
escape = '03'; Ccntl CU

null = '#8;
maxprompt = 30; { Maximum length of a prompt I

max str = 30; { Maximum length of a string I

type
I Query Type Definitions I

promptstring = packed array[l..max promptl of char;
p_len = l..maxprompt;

position = ..maxstr;
stringcase = (upper, lower, none);

char-string = packed arrayll..max str] of char;
boxes = (q, m, h);

C Screen I/0 Declarations)
procedure goto-box(box boxes; x,y : integer); external;
procedure clear box(box : boxes); external;
procedure writech(ch :char): external;
function getkey : char; external;

S. procedure help(helpindex : integer); external;

procedure querystr(prompt ; promptstring;

promptlength : p_len;

min, max : position;
var answer : char-string;

var stringlength : position;
make-case : stringcase;

help_index : integer):

var helprequest : boolean;
j : plen;
i : position;

procedure getstring;
var character : char;
i. currentposition : position;

'.I

.5

QueryStr Nodule

procedure redisplay;
var i -position;
begin

gotobox(q,promptlength+currentposition,@);
for i:=current~position to stringIength do

writech(answertil);
if stringIength<max

then for i:=string length+I to max do
S writech('_');

gotobox (q,promptlength+currentposition,e);
-~ end;

procedure insertchar;
var i : position;
begin

if U(current position <max) and
* (string~length>=currentpositian))

then begin
for i:=max downto current position+I do

answerli]:=answeri-lJ;
if stringIength<max

then string 1ength:=stringjlength+I;
answer~current..positionl:= 4

en ; end;, redisplay

procedure delete char;
var i :position;
begin

if ((currentposition (max) and
(string) ength>=currentposition))

then begin
for i:=currentposition to max-I do

answer ri3J:=answer + 1];
stringjlength: =string~length-l;
answer Emax3:=
redisplay

end;
if current _posi ti onmax and string) engt-max

then begin
stringjength:=strinqlength-li
answertmax2:=''
writech('_'); writech~cursorlefti

end;
end;

procedure move) ef t;
begin

* *~if current position4A
then begin

E-13

QueryStr NoduleI

current position:=currentposition-l;

writech(cursorleft);

* end;
end;

procedure move right;
begin

if currentposition<max
then begin

current position:=currentposition+l;
writechtcursorright);

end;
end;

procedure addchar;
begin

if string length~currentpasition
then stringjlength:=currentposition;

answer(currentposition]:=character;
writech(character) ;
if currentposition~max

* then current..position:=current..pasition+I
else writech(cursorleft);

end;

begin (getstring I
goto box (q,prauptjlength+l ,@);
if max~max-str then max:=max-str;
current position:=1;
stringjlength:=@;
for i:1l to max str do answerfil:=I
helpyrequest: =false;
repeat

character:=getkey;
case character of

ins : insert-char;
del : delete char;

leftarrow : movejeft;
rightarrow : move -ight;

return : if string iength<min
then character:=null;

: helprequest:=true;
end;
if character>='' and character~zchr(12')

then add char;
until (icharacter~return) or help request);

end;

procedure make 7upper;
var i position;
beg,..,

for i:1l to max do

E-14

% %V

QueryStr Module

if answertiJ >= 'a' and answerbl <= 'z'
then answer~iJ:=chr (ord(answerliJ)-ord(a')+ord('A'));

end;

procedure makejI ower;
var i :position;

beor i:1l to max do

if answerliJ >= 'A' and answerliJ <= '
then answerli3:=chr(ord(answerliJ)-ord('A')+ord('a'));

end;

begin (querystr
clear .box Cq);
repeat

V goto~box(q,&0,I);
for j:1l to prompt length do writech~prompttj]);

w ritech('
;

for i:1l to max do writech('-');

write('Response must be between ',min:2, 'and ',max:2,' character

getstrinq;
if help..request then help(helpjindex);

until not helpjrequest;
case make-case of

upper : makeupper;
lower :make-lower;

end;
,Ilear..box (q);

- end;

begin
41 fSNULLBODY)

end.

OII

E-1

DOSFile Module

.', •.

(Swidelist)

Operating System Dependent File Operations *1

program dos-file;
:onst doscmndi = #4415; (Address of DOSPLUS Command interpreter)

S dosrun = #4433; (Address of DOSPLUS Run File Routine)
return = 'B@D';

type byte = ..255;
filespec = arrayll..12] of char;
drive-id = @..I;

(The procedure calls is used to call assembly language routines)
procedure callS(address : integer; var a,status : byte;

var bc,de,hl,ix,iy : integer); external;

(See the Disk ID module for details on the following }
procedure switchdisk(drive : drivehd: disk-id : integer);

external;

{* Procedure : Kill-File *}
(* Parameters Drive, DiskID, FileName *}
f* Entry Conditions : The parameters identify the file to be *1
(* wiped out. *1

procedure kill file(drive : drive id; diskid : integer;
fileIname : filespec);

var command : arraytl..16) of char; { Text of Command 1

cmndaddr : integer; (Address of Command }
ch : 1..12; C Character pointer }
db % byte; (Dummy Byte I
dw : integer; { Dummy Word)

begin

switchdisk(drive,diskid);

command:='KILL
C insert File-Name after the word 'KILL' in the command I
for ch:=1 to 12 do command[ch+5]:=file namech];
command[18]:=return; cmndaddr:=location(command):
call$(doscmndiodb,db,dw,dw,cmndaddr,dw,dw);

end;

{(Procedure : RunFile - Execute a program }
{- Parameters : FilejName, Drive, DiskID *1
{* Entry Conditions : The parameters identify an executable *3
(4 program that is to be run. Control will not return! !'! *'

procedure runfile(filename : filespec; drive : driveid;
disk id : integer);

var dcbfaddr integer; Address of File DCE.,

E-ic

t **,., ,_, v .. C, . " . *. ... *.

DOSFile Nodule

'~ ' dcb : araU.)of char.- File Control Elocl

ch : .1; ara:ter Counter
db : bvte; D ump. I.te
dw :integer; 41~e.'-1

begin
switchdisk (drive, disk id);
for ch:=1 to 12 do dcb~ch3:x4i~emn&*vct2
dcbC 133: :return;

'4 dcb addr:zlocation(dcb);
call$(dosrun,db,db,dw,dcb~addr,dw,dw,dwl;

end;

begin
(Snul lbody)
end.

I

E-11

I.%

DiskID Module

4 '" SWIDELIST}
program diskid;
const maxprompt = 30; f Maximum length oi a prompt

max str = 30; C Maximum length of a string 2

type

' Query Type Definitions I
promptstring = packed array[l..maxprompt] of char;

p_len = 1..max prompt;
yesno = (yes, no, idunno);
boxes = (q, m, h);

r File Access Type Definitions I
drive id = @..I; (or (A, B) I
id num = file of integer;

byte = 0..255;

(Screen I/O Declarations)
procedure clear line(box : boxes; y : integer); e::ternal;
procedure wait-key; external;

(Query Declarations)
procedure queryyn(prompt : promptstring;

prompt_length : plen;
var answer : yesno;
helpindex % integer); external;

procedure setacnm(var id file:id num; spec:string); external;
procedure ioSerror(newstate : boolean;

var oldstate : boolean); external;
iunction fileSstatus(var f:id-num) : byte; external;

procedure set id(drive : drive_id; var id-file : id-num);
begin

case drive of
0 : setacnm(id-file,bldstr('disk/id:O'));
I : setacnm(id file,bldstr('disk/id:1'));

otherwise setacnm(id file,bldstr('disk/id:1'));
end;

end;

function whichdisk(drive : driveid) : integer;
var id file : idnum;

id : integer;
old t boolean;
d : yesno;

status : byte;

begin C whichdisk
ioterror(false,old);

.setaid(drive,idj ile);
repeat

E-18

DiskiD Module

reset(id file); status:=file~status(id file);
if status90

then begin
read (id fi le,id);
status:=fileSstatus(id file);

end;,
if status=@ then whichdisk:=id;
if Status=8

then repeat
quryyn('Have you put a disk in yet? J,2,d,16

until dyes;
if status=24 then whichdisk:=O;
until status(>8;
close(id-fi 1,);

end;

procedure id-disk(drive:driveid; dislc-num:integer);
var id file : idnum;
begin

set -id(drive,id file);
rewrite(id file);

W rite(id -4ile,disknum);
close(id file);

end;

pro cedure switchdiskidrive - drivejid; diskjid :integer);
var answer :yesno;

id : integer;

procedure close all(drive :drivejid); external;

begin C switchdisk)
id:=whichdisk (drive);
if id<>disk id

then begin
close all (drive);
repeat
clear I ine(q,-1);
write('lnsert disk number',diskid: 3,' into drive ',drive:

repeat
query yn('Ready to Go? ,2

answer, 188)
until answeryes;
clear lineq,-1);
id:=whichdisk (drive);
if id-,"disk ±d

then begin
hrite('This is disl: number', id:Z, ', not ',disk id:

Kit write(' Press any key.');- waitjev;
A. .1end;

E-19

DisklD Nodule

until id=diskid;
end;

end;

procedure new disk(disk id : integer);
var answer : yesno;
begin

clear line(q,-1);
write% Put a blank formatted disk into drive I'1);
repeat
queryyn('Are you ready? ',14,answer,19);
until answer=yes and whichdisk(l)=O;
id disk(1,disk_id);
clear line(q,-1);
write('Label this disk as Disk ## °,diskid:3);
repeat
queryyn('Have you labelled it yet? 15,answer,22);
until answer=yes;
clearline(q,-l);

end;

begin
-$NULLBODY}
end.

'2

, % •

-' E-2C

LinkFile Module

{SWIDELIST)

{* File Access Module - Controls access to all files
{, *,**

(* All system files are maintained as two doubly-linked *}
{* circular lists. One list contains all of the allocated *}
(* records in the file, and the other contains all of the *1
{* free records. Every record in the file must belong to one *}
{* of these lists. FNon linked files are also supported. *}
{* For maximum portability, the maximum record length is 128 *}
{* bytes. *1

program file-access;
const

end of list = -1; { Indicates End of Linked List I
max open = 10; (Maximum number of open files

max rec size = 128; (Maximum Record Size)
max-buffs = 2: { Number of simultaneously open files }

type
t File Access Type Definitions 3

drive id = 0..1; C or (A, B) I
filespec = packed array[t..12] of char;

whichfile = 1..maxopen;
links = record

next : integer; (Record Number of next I
prey : integer; f Record Number of Last I

end;
max-rec = record

case boolean of
true : (data : array[1..max-recsize] of char);
false: (link : links);
end;

data file = file of maxrec;
file desc = record

fs : string; (File Name I
linked : boolean;
drive : drive-id;

on-line : boolean;
reclen, Record Length I
disk_id, Diskette containing file I
status, f System Dependent File Status }
first, (Record Number of First Entry I

next free, Record Number of Free List
recs avail, [Number of Unused Records
next read, (Next to be Read)
lastread, Last Record Accessed }

buf num : O..ma._buffs;: Current Buffer NUmber }
end;

where record
linked : boolean;
file-name : filespec,

E-21

*,'" *" '".' "". * ' * ' ' ., "* . ''' .. : , ¢ ".'¢. .. - €''-.' '- .'.- " '. "-

LinkFile Module

drive : drive id;
di skj -id,

recdlen,
recsavai 1,
first,

.4.' free : integer;
end;

G lobal Arrays containing all required File Information
common files :array~whichfile] of filedesc;

P buff :array~l..max -buffs] of dataj- ile;
P slot array~l..aax-buffs] of byte;
next1 : byte;
buffer m axrec;

p4 System Dependent Random Access File Routines
procedure openrand(var f:datajfil e; recardlentinteger;

pathname:string; var status:integer); external;
procedure readrand(var f:datafil e; recordnum:integer;

var dat:max -rec; var status:integer); external;
procedure writerand(var f:datajfile; recordnum:integer;

var dat:maxrec; var status:integer); external;
procedure closerand(var f:data-fi le); external;

procedure fread(file nun : whichfile; rec~nuu integer;
var buffer : aaxjrec; linkonly boolean);

var teapbuff : max-rec;
begin

with files~file num3 do
begin

if linkonly
then begin

readrand (P -buff (buf numi ,recnum ,temp..buff ,status);
buffer. link:=tempbuf4.link;
end

else readrand(P buffbufnum,recnum,temp.buff ,status);
end;

end;

*procedure fwrite(file -num : whichfile; recjium integer;
var buffer :maxrec; linkonly :boolean);

Yar temp bufi max-rec;
begin

with filesfile numJ do
begin

if linkonly
then begin

readrand (P buff (buf nurn),recnua ,temp buiff status);
~.' *./temp buff.link:=buffer.link;

writerand (P buff ~buf numj ,rec num, temp buf , status;

- ~ ~ ~ ~ ~ ~ 7p. . - ~ *.*--..

LinkFile Module

end
else writerend(P buff[bufnum],rec num,buffer,status);

end;
end;

'. C See the Disk ID Module for details on the following }
procedure switchdisk(drive : drivejid;

diskid : integer); external;

-" Procedure : StateF - Determine Current Pointer Values
,* Parameters : File Num, First, Free *}
{* Entry Conditions : FileNum identifies the file to be *}
{* looked at. *}
-* Exit Conditions The current values of the heads of the *}
(* allocated and free lists are assigned to First and Free. *}

procedure statef(file num:whichfile; var first,free % integer);
access files; { Global Array }
begin

first:=files[file numl.first;
free:=files[filenum].next free;

"- end;

{* Function : RoomF - How much Room is Left in the File? *}
{* Parameters : File Num *3
{4 Result : Number of Unallocated Records in the file *}

function roomf(file-num : whichfile) : integer;
access files;
begin

roomf:=files[file-numl.recs-avail;
end;

{* Procedure : ResetF - Set pointers to the top of the file *}
{* Parameters : File Num *}

* {* Process : The file pointers Next Read and Last-Read are *3
S* set to the first allocated record in the file. Any file *}

(* access after a resetf will access the first record. *}

procedure resetf(filenum : whichfile);
access files;
begin

w ith files[file num] do
if linked

then begin
last read:=first;
nex-tread:=first;

jv .- ' end
else next read:=e;

E-23

., 4 t*'Z.4-.- - .. .e..L..,.*-v'w% • , *. .. - .

V "LinkFile Module

end;

(4 Procedure : InitF - Initialize a slot in the Files array *}
(* Parameters : FileNum, File Loc 4)

{t Entry Conditions : File Num identifies the slot to be

{f initialized, and FileLot contains the initialization
(* parameters. *}
f* Process : The File Num slot will be loaded with FileLot *1
{* and the file will be set to off line status. The file *1
f* will then be reset to the first record. *}

procedure initf(file num : whichfile; file_loc : where);
access files;
begin

with filesrfile-numl do
*begin

System Dependent String Manipulation Below! I
' TRS-BI Strings are manitained on the heap. To recover
the memory they use, they must be Disposed before new
values are assigned to them. Bldstr just converts a
literal or character array into a string on the heap. }

if fs<>nil then dispose(fs);
fs:=bldstr(file loc.file name);
(Copy the rest of File Lot to slot File-NumI
linked:=file loc.linked;
disk id:=file loc.diskid;
drive:=fileloc.drive;
rec_len:=fileloc.reclen;
recs avail:=file-loc.recsavail;
first:=file loc.first;
next _free:=file loc.free;
C Set file off-line }
on-line:f alse;

end;
*resetf(file num);

end;
*C********t &***

{* Procedure : Init Files -Onetime Files Array Initialization *I
C Process : Sets ALL file slats off-line so that a Close All *I

CI operation (See Below) will not attempt to close file slots *1
f* that were never initialized. Should only be called once. *1
********************************** #.******.***.**t***

procedure init files;
access files,x;
iar i : 1..maxyopen;
begin

for i:=l to maxopen do
with filesti] do

. 9 begin
on line: =false;

E- 4

'.4

~:6
'.4;r ::

LinkFile Module

fs:=nil;

end;

for i:=l to maxbuffs do P-slotli]:=0;
next-1:=l;

end;

{* Procedure : CloseF - Close Random Access File
{* Paramaters : File Num *
{* Process : The file in slot File Num is closed and the On- *}
{* Line flag is reset. If already off-line, nothing is uone. *

procedure closef(file num : whichfile);
access files;
begin

with filesffile num] do
begin
if on line

then begin
closerand(PIbuff[bufnum]);
on line:=false;
P slotbufnum]:=@; C Release the buffer }

end;
end;

end;

.* Procedure : OpenF - Open file for reading or writing '}
(* Parameters : File Num *
{* Process : The file in slot FileNum is brought on-line. *}
f* If the file is already On-Line, then nothing need be done. *
(* If, however, the file is off-line, then the diskette *}
(* containing the file must be mounted, the system dependent *1
•{ association between logical and physical files must be made*)
{* and the file opened for random access.

procedure openf(file num : whichfile);
access files;
var i : integer;
begin

with files[file num] do
if not on line then

begin
r Make sure the right disk is present }
switchdxsk(drive,diskid);
(Look for an available buffer I

abufnum:=M; i:=l;

repeat
if Pslot[i]=0 then bufnum:=i;
i :=il;

until((i>max buffs) or (buf num0>)!;
If one isn't available, free one up. }

E-25

A'V

CC dW7:- . - - . ..P - . .- - . .

LinkFile Nodule

if buf-num=@
then begin

closef(P _slotEnext_1));
buf-num:=nextl;
next I:=next_1+1;
if next l>max buffs then next l:=;

end;
C Reserve the buffer for this slot)
P-slot[bufnum]:=filenum;
(Open the file I

{ Alcor Pascal requires non-simple files to be initialized
before they can be accessed. The :: is a type transfer
operator that tells the compiler to treat the variable as if
it was of the specified type, integer in this case. 1

P_buff~bufnum]::integer:=0;
C System Dependent Random Access File Open
openrand(P _buff(buf-numl,reclen,fs,status);
on line:=true;

end;
end;

AC Procedure : Close All - Close all files on a drive *}
C* Parameters : Drive *)
{* Entry Conditions : Drive indicates which drive is to have *)
(* all of its open files closed. *)
.* Process : This routine is called prior to removal of a disk*l
.* from a drive to ensure file integrity. Each slot in Files*)
" is checked to see if the drive matches. If it'does, the *1
{* file is closed. *)

procedure close all(drive : drivejid);
access files;
var fx : whichfile;
begin

for fx:=l to maxopen do
if files[fx].drive=drive then closef(f.x)

end;

Ce*******************************mm**************************

{* Procedure ReadF - Read the Next Record
C* Parameters : File Num, Buffer, EOLF 4)

Cm Entry Conditions FileNum identifies to file to read. *1
(* Next-Read contains the record number of the next record to *)

%.* be accessed.
* Exit Conditions : Buffer contains the record read, and
', Next Read and Last-Read will be updated accordingly, unless*)

-a.. {* an end of file condition was detected. In this case, the *}
{* Buffer will not be modified and EOLF will be set. 40

procedure readf(file num : whichfile; var buffer links;
"" var eolf boolean);

E-26

' -'." " .. .""""" " . . , . , . .,, . -. " '.. ," .", . ..-. ~... - " ... * * '

LinkFile Module

access files;
var link : links;
begin

openf(filenum);
with filestfile-num] do
if linked

then begin
(Check for end of list condition 2
if ((next read=first) and (last read<>first)) or

(next read=end of list)
then eolf:=true
else begin

fread(file num,nextread,buffer,false);
last read:=nextread;
next read:=buffer.link.next;
if last read=nextread

{ There is only one record I
then eolf:=true
else eolf:=false;

end;
end

else begin
fread(filepnum,next read,buffer,false);
next read:=next read+l;
if status=4

then eolft=false
else eolf:=true;

end;
end; { readf

{* Procedure :WriteF - Update the LastRecord accessed *}
{* Parameters : File_Num, Buffer, WriteGK *1
{* Entry Conditions : File Hum identifies the file to write *}
{* to. Buffer contains the information to be written. Last- *1
4 Read is the record number to be written to.
{, Exit Conditions : Buff will have been written to the file. *2
{* No re-positioning will occur, so successive writes will *}
{* over-write the same record. WriteOK will be TRUE if there *1
{. were no write errors. *1

*99 ******************************** *********,**********4**41**

procedure writef(filenum : whichfile; var buffer : links;
var writeok : boolean);

access files;
begin

openi(filenum);
with files[filenuml do
if linked

then if lastreado>endoflist
then begin

writeok:=true;
fread(file_num,last_read,buffer,true);

E-27

4.7 77

LinkFile Nodule
* ...

fwrite(file_num,lastread,buffer,false);
end;

else writeok:=false

else begin
fwrite(file_num,nextreadbuffer,false);
next read:=next read+l;
if status=@

then writeok:=true
" en else writeok:=false;

"-' end ;

end; t writef I

(* Function : Del Rec - Delete a record from one of the lists *}
{* Parameters : FileNum, Pointer *1
{* Result : Record number of deleted record *}
t* Entry Conditions : FileNum indicates file to use, Pointer *3
{* is the record number to be deleted. *1
-* Exit Conditions : The record will be deleted from the list *1
fl* and pointer will be set to the the next record in the list.*)

function del rec(file num : whichfile;
var pointer : integer) : integer;

access files;
var link : links;
begin

openf(filenum);
with files[file-numJ do
begin

delrec:=pointer;
e Read the Next and Previous Record numbers)
fread(file num,pointer,buffer,true);
link:=buffer.link;
if link.next=pointer (It's the last record)

then pointer:=end of list

else begin
C Make the Next record the new Current record 2

pointer:=link.next;
• Delete the record from the forward list I
fread(filenumlink.prev,buffer,true);
buffer.link.next:=link.next;

' fwrite(filenum,link.prev,buffer,true);
" Delete the record from the backward list I
fread(filenumr,lin:.next,buffer,true);
buifer.linu.prev:=link.prev;

fwrite(file-num,link.net,buffer,true);
end;

N:. end; wi th
end; , del rec I

• .,***************444444*************4 * * 444*4* * * 2
"* Procedure : InsRec - Insert k record into one of the lists*1

m9. ~E-:s

.' °' ,,. ' . *. ... v.x .-.~ ,. ,..: .-.* ... 2 ., - -., . ., .t - .. , . , .

LinkFile Nodule

(* Parameters : File_Num, NewRec. Pointer *3
(* Entry Conditions : File Num indicates which file to use, 4}
{* NewRec is the number of the record to be inserted into the*)
{* list, and Pointer is the number of the record that NewRec 4}
{* will be inserted after. *3
{* Exit Conditions : The links will have been adjusted so that*)
C* New_Rec logically follows Pointer in the list. *}

procedure ins rec(file num whichfile; newrec : integer;
pointer : integer);

access files;
vat link : links;
begin

openf(file_num);
with files[filenum] do
begin
if pointer=end-of-list C Empty List }

then begin
{ Make NewRec the only entry in the list I
buffer.link.prev:=newrec;
buffer.link.next:=new-rec;
fwrite(file-num,new_rec,buffer,true);

end
else begin

C Insert New Rec into the forward list }
fread(file_num,pointer,buffertrue);
link.prev:=pointer; link.next:=buffer.link.next;
buffer.link,next:=newrec;
fwrite(file num,pointer,buffer,true);
I Insert New Rec into the backward list I
fread(file-num,link.next,buffer,true);
buffer.link.prev:=newrec;
fwrite(file-num,link.next,buffer,true);
C Make NewRec point to its neighbors I
buffer.link:=link;
fwrite(file-num,newrec,buffer,true);end;

end; C with I
end; C ins rec I

C* Procedure : InsertF - Insert a record into the file 4}

{4 Parameters : FileNum, RecNum, Buffer *3
C* Entry Conditions : File Num indicates the file to use. *1
C* Buffer contains the information to be inserted. Last
{' Record is the number of the record which Buffer is to be 4}
C' inserted after. 'I
It* Eit Conditions - RecNum will be the record number which *}

C' was assigned to Buffer in the file. Once a record is added')
C* to the file, its position will never change. *}

%t), *** *4************* I
procedure insertf(file-num : whichfile; var rec num : integer;

E-29

m ,.t v. .

LinkFile Nodule

var buffer : links);
access files;
begin

openf(filenum);
with files[file num] do
begin

if nextfree<>end of list
then begin (There IS a free record }

recs avail:=recsavail-1;
(Delete a record from the free list }
rec num:=del rec(filenum,nextfree);
(And add it to the allocated list }
ins rec(filenum,recnum,lastread);
(Update the record pointers }
last _read:=rec_num;
if first=end _of _list
then begin (This is the first record }

next read:=lastread;
first:=last read;

end;
{ Write Buffer to the file }
fread(filenum,lastread,buffertrue);
fwrite(filenum,lastread,buffer,false);

end;
end; { with

end; { insertf)

{* Procedure : DeleteF - Delete a record from a file
(* Parameters : File Num
{* Entry Conditions : FileNum is the file to be used. Last- I

{* Read is the record to be deleted. *1
t* Exit Conditions : LastRead will point to the record foil- 4)

(* owing the deleted one.

procedure deletef(file num : whichfile);
access files;
var recnum : integer;
begin

with filestfile-num] do
begin

if first<>end of list
then
begin t There is a record to delete

recs-avail:=recs avail+1;
i Delete the record form the file }
rec num:=del rec(filenum,lastread);
if last read=end of list

then begin
first:=endoflist;
next read:=end of list;

end;

E-30

LinkFile Nodule

- - Add the deleted record to the free list }

ins rec filenum,recnum,nextfree);
next free:=recnum;

end;
end;

end;

-. Procedure Posf - Position file pointers
{, Parameters : file num, Rec_ um *1
C* Entry Conditions : File Num indicates the slot to use, and *

{* Rec hum is the record number to which the file pointers *)
{* will be set. *}

procedure posf(file num : whichfile; rec-num : integer);
begin

with files[file-num] do
begin

if ((rec num=first) and (not linked))
then resetf(file num)

Seelse next read:=rec num;
end;

end;

{* Procedure : CreateF - Create a new Index for the file 0)
f* Faramaters : File Num, How_Many 4}

{* Entry Conditions : File _Num indicates which file to use, *)
.{ and HowMany indicates how many records to allocate to the *)
(* file. 4}{* Process : The links will be initialized as follows : all of*}

(* the records will be assigned to the Free list, and the 4)

* {* allocated list will be empty. None of the information in *}
({ the file will be erased, but it will not be accessable. 4)

procedure createf(file num : whichfile; howmany integer);
access files;
var rec : integer;
begin

openf(file_num);
vith files[file-num] do
begin

first:=end of list; next_free:=O;
recs-avail:=howmany;
for re::=@ to how_many- do
begin

Set up the forward and backward links }
buffer.link.next:=rec+l; buffer.link.prev:=rec-l;
f Make the next record of the last entry point

to the First entry)
if buffer.link.next=howmany then buffer.link.next:=@;
{ Make the previous record of the first entry

E-JI

S.

,Eb- -, - -- -.- .-

LinkFile Module

point to the Last entry -a circular list.
if buffer. link.prev=-l then buffer. link.prev:how1many-I;
f write (f ile num.,rec buff er true);

end;
end;

a, ciosef (file nut.);
end;

procedure erasef (file num : whichfile);
access files;
var file-name : filespec;

procedure kill -file(drive : driveid; disk id integer;
file-name : filespec); external;

begin t erasef I
with filesfile nut.] do
getstr (fs,file name) ; kill file(drive,disk id,file name) ;

end;

begin
($NULLBODY)
end.

E. -

Menu Module

(SWIDELIST)

(* Menu Module - procedures for the manipurlation of menus

({ Menus may either be read directly from a file, or created 0}
{* dynamically. In either case, the format of the menu in *i
(* memory is identical. The selection of an item by the user *}
{* is done by moving the cursor next to the desired item and *}
.{ pressing <RETURN>. Help is available for each item by *)
-* pressing <?>. The menu structure allows for more than one *}
({ level. If the item selected has sub-selections, control *}
1* will not return to the user until a terminal item is selec-*)
({ ted. *}

program menumodule;
const

uparrow = '#5B';
downarrow = '#tA';

cursorleft = '#18'; { Define cursor motion commands }
cursorright '#19';
cursordown = A ;

cursorup =AB';
cursoron = *#@E';

cursoroff = "IF';
return = "AID';
escape = 'A3'; (cntl C)

null = '#@@';
max-item = 20; C Maximum length of a menu item I

menus = 2; (Menu file is file number two I
type
{ Menu Type Definitions)

menu-string = packed array[l..max item] of char;
item-ptr = Amenuitem;

(in Memory Menu structure)
menu-item = record

item-text : menu-string; {Text User sees)
itemcode, (Code returned I
helpindex integer;
next_item, { Pointer }
previous-item, { Pointer I
next-level : itemptr; Pointer

end;
{ Menu File Record Structure }

menu-In record
menu-number integer; Menu ID I
bumpdown, C True if item has

Sub-selections)
bumpup : boolean;{ True if last item of

current level I
item-text : menu-string;

. itemcode,
helpinde : integer;

~E-7Z

. ,
'p ° . " -ie . .". '' '' ,

'

Menu Module

end;

whichfile = I. 10;
boxes = (q, m, h); { Query, Menu, or help Box I

{ Define current menu environment I
common old : integer; (Last menu accessed I
first item : itemptr; (Top of last menu)

top list : itemptr; (Top of Current List I
list : itemptr; C Current position inside list }

count : integer; { Number of lines in current level I
max-lines : integer; { Number of lines allowed in a menu I

(See TermIO Module for details on the following I
(Screen I/O Declarations)
procedure gotobox(box : boxes; x,y : integer); external;
procedure clear line(box : boxes; y : integer); external;
procedure clear boxtbox : boxes); external;
function getcount(box : boxes) : integer; external;
procedure writech(ch : char); external;
function getkey : char; external;

{* Procedure : Erase Menu - Delete a menu structure from Heap *}
C* Parameters : First _Item
Ci Entry Conditions : First_Item points to the first item of *0
{* the menu structure currently defined. *1
{* Process : Each item of the current level will be Disposed. *}
C* If the menu menu item has a sub-level, however, Erase-Menu *}
{i will be recursively called to erase that level first. *1
{* This will insure that the entire tree structure is erased. *}

procedure erase-menu(first-item : item_ptr);
var current-item : item_ptr;
begin
{ Make sure there is something to erase! }
if first item<>nil
then repeat

{ Erase all lower levels of menu }
if first item".next level<>nil

then erase menu(first _item^.next level);
current item:=first item;
Point to the next item I
first item:=first item^.next item;
disposeCcurrent-item):

until ;irst item=nil;
end;

C See the LinFile Module for details on the following }
procedure resetf(file num : whichfile); external;
procedure readf(file num : whichfile; var buffer menuIn;

..K. var eolf : boolean); external;

F-74

V Menu Nodule

{ See the Held Module for details on the following

procedure help(helpindex:integer); external;

'. Function : Read Menu - Read a Menu from the Menu File *1
(- Parameters % Menu Number
f{ Result : Pointer to first item of Menu I}

(f Entry Conditions : Menu-Number identifies which menu to *}
{* read. a)
" Exit Conditions : The menu will have been read from the a)
({ Menu File into memory. The result of the function is a 0}
({ pointer to the first item of the menu. 4}

* function read menu(menu number : integer) : itemptr;
var menu-line : menuIn; (A Line from the file)

item : itemptr;

% eolf : boolean;

- .,(** **a*****************4*a*aaaaaa**aa*a*aa*a**** a**a***

-{ Procedure : Read-Level - Read all menu items at current *}
{a level into memory a)
.(Parameters : Last Item, LastLine 4)
(6lobal Variables g EOLF
f{ Entry Conditions : LastItem points to an allocated but *)
(* not yet initialized menu item. LastLine is the last item *)

l ({* read from the file. EOLF is the end of file indicator. *1
(a Process s First, the values in Last_Line are assigned to a)

Last Item. Then, a test is made to see if there are sub- *}
(* items under this one. If there are, then ReadLevel is
(4 called recursively to read it. Finally, a test is made to a)
(* see if this item is the last item at this level. If it is,*i
{*. then control will return to the caller. 4)
(aata*aataa*aaaaaaaaaaaaaaaaaa*aaaaaa*************************

procedure read level(last_item : itemptr;
last line : menuln);

var level,item : itemptr;
menu-line : menu in;

done : boolean;
begin

done:=false;
repeat

Assign File values to Memory Menu
last item'.item text:=last line.item text;
last-item^.item-cde:=last-line.item-code;
last item'.help_index:=last _Iin.help inde:;x
if last line.bump down

then begin C There ARE sub-items
C Allocate a new item and point to it :
new(level); last_.temt.next_level:=level:

C Make it the first item of the next level;
level'.previous item:=nil;

% *.K C Pre-read the Menu File

readf(imenus,menuline,eolf):

.. - "

Menu Nodule

{ Read in the rest oi this level I
read-level(level,menuline);

end
else last itemA.next level:=nil;

if eolf or lastline.bump up
then begin C Done with this level }

last itemA.next item:=nil;
done:=true

end
else begin

C Read in the next item for this level I
readf(menus,menuline,eolf);

{ Allocate storage and point to it I
new(item); last itemA.next-item:=item;
itemA.previous _item:=lastitem;

* Set up for next iteration)
last item:=item; lastline:=menu line

end;
until done;

end;

begin % read menu }
resetf(menus);

I First, find the appropriate Menu in the Menu File I
repeat

readf(menus,menuline,eolf);

until menu line.menu number=menunumber;
C Allocate storage for and point to the first item I

new(item); item^.previous level:=nil;
read menu:=item;

C Read in the entire menu structure I
read level(item,menuline);

end;

C0 Function : Select Menu Item *1
Ce Parameters : Menu Index *1
C{ Result : Item Code of the selected terminal item.
(e Entry Conditions : MenuIndex points to the first item of .1
(4 a Menu currently in memory. * .

Exit Conditions : The user will have selected one of the *1
C{ terminal menu items (an item with no sub-items). Its code *1
{* will be returned as the value of the function. If a non- *)

C* terminal item is selected, then a recursive call to this e
9 function will be made, until a terminal item is selected. 'I

function select menu item(menu index : item_ptr) integer;
var index : itemptr;

:haracter : char;
selection : integer;

E-764;:2,2':

- Z -w - S - -- - ----- - . - -- . .. - -- 6--- - .-. " * - - - . - . -9

Menu Module

(i Procedure : MenuDisplay - Display all Menu choices at the *}
current level

Process : The menu box area of the screen is cleared, and *]
the choices available at the current level of the menu are *1

(* displayed on sequential lines of the screen. The cursor is*}
({ positioned to the left of the first item.

procedure menudisplay;

var index : itemptr;
% 1 : integer;

begin

clearbox(m);
1:=O;
index:=menu index;

K. repeat
Indent each item to leave rcom for the cursor I

"-p gotobox(m,2,l);
write(indexA.itemtext);

C Point to the next item at this level }
1:=I+I; index:=indexA.next_item;

until index=nil;
gotobox(m,9,9);
writech('*'); writech(cursorleft);
writech(cursoroff);

mend;

- begin C Select Menu Item }

4c menudisplay;
index:=menu-index;

repeat

character:=getkey;
case character of

uparrow : if index^.previous itemonil
m m then begin

ml writech(' '); writech(cursorleft);
'C , writech(cursorup);

writech('*'); writech(cursorleit);
index:=index.previous item

end;
downarrow : if indexA.next item<>nil

then begin

writech(' ');writech(cursorleft);
writech(cursordown);
writech('*'); writech(cursorleft);

- index:=index".next item
end;

' '?" begin
. "' help(index"thelo index):

writech(cursoroff)

end;

, return : if index".next-level=nil

then select menu item:=inde.A.item codE

E-57

,' " -. "',V .. '..' ' . ".- ". "..".-,............. ...-. "" .

m-m0

Menu Module

else begin t recursive call I
selection:=select menu -item(inde:i^.next-level);

if selection=0
then begin

Return from lower level with
no selection, so redisplay
current level 1
character:=null;
menu display;
index:=menu index

end
else select menu item:=selection;

end;
escape : select-menuitem:=O;

end; I case 1
until character=return or character=escape;
writech(cursoron);
clear box(m);

end; C select menu item I

(* Function : Menu - Make a selection from a File Menu 4)I* Parameters : Current *}

G* Global Variables : Old, FirstItem
(4 Result : Item Code of selected terminal item. *}
(* Entry Conditions : Current is the number of the menu to be *1
{* made the new current menu. Old is the number of the last *
(* menu accessed, and First_Item points to the old menu. *}
(f Exit Conditions : Old is updated to Current, and the *}
(* function returns the sele:ted code. *}

function menu(current : integer) : integer;
access old, first_item;
begin

if old 0 current
then begin { A new menu must be read from the file }

erase menu(first item);
first item:=read-menu(current);
old:=current;

end;
menu:=sele:t menu item(first item);

end;

(* Procedure : Init List - Initialize a Memory List to empty *3
(* Process : A list is to be built in memory. It must first *1
L4 be initialized. Any old list will be erased, and the size *3
(* of the list displayed will be set to fill the menu-bo:. *

procedure init-list;
access top_list, list, count, maxlines;
begin

E-38

'g*~''~s.., *>-...-*.'...~~...**j* *.~*h

Menu Nodule

erase-menu(top_list);
topjlist:=nil; list:=nil; count:=O;
G Get the size of the Menu Box I
max lines:=get count(m);

end;

(****.**********************************ns**********n****}

{* Procedure : Build List - Add an item to the Memory List *1
(* Parameters : Item Text, Item Code 4)
{* Global Variables : Top List, List, Count, Max Lines *}
(* Entry Conditions : Item-Text and corresponding ItemCode *1
{* are to be added to the list in memory. *}
(* Process : The item will be added to the list. If the *1
U* number of items in the current level exceeds the capacity *}
(f of the menu-box, then a new level will be created. Count *}
{* maiantains the number of items in the current level, and 4)

{* Max Lines is the size of the menu-box. Both are j
(4 initialized by InitList. The first call to this procedure *
{* will define Top List, and position for subsequent calls 4)

U* will be maintained by List. *}
9" *4444444444**4***4*4*44***4********************

"-.9 procedure build list(item text:menu string; item code:integer);
access toplist, list, count, maxjlines;

N.' var entry : itemptr;
c : integer;

begin
new(entry);
if list<>nil
then begin (This isn't the first element of the list I

., list".next item:=entry;

entry^.previous item:=list;
end

else begin t This IS the first element of the list I
entry".previous-item:=nil;
top_list:=entry;

end;
if count=(max lines-I)
then begin (Start a new level of menu '

.s, entry^.next-item:=nil;
* new(list);
*5% list".previous-item:=nil;

a, lxstA.next level:=nil;
entry'.next-level:=list;
count:=0;
entry'".itemtext:='Rest of the list
entry" .help_ ndex : =17;

a.; *end

else begin (Add to present level of menu }
• entry,^.next-level:=nil;

list:=entry;
end;

list t .itemtext:=item_text;

E-39

* -,"-, - -'vv..:-.'% --...-. , vV%% %'% . ,_ ,%A2%L'.,~? .:y. _..-- , -a. -,- N. .L <.

Menu Module

i.istA. item code:=item_code;

list^.help index:=18;
l1st°'.next item:=nil; t In case this is the last one
count:=count+l;

end; (build list }

Ct Function : SelectList - Select an item from Memory List }
C* Global Variables : TopList *1
C* Result : Item Code of selected item. *}
,* Process : After a list hes been built in memory through *}
C' calls to BuildList, an item may be selected with this *1
t* function. Since the Structure of both lists and menus is *}
C* identical, Select Menu Item is used to do the actual work. *1

function select list : integer;
access toplist;
begin

_ , select-list:=select-menu-item(top_list);

end;

4 Ct Procedure : mit Menu - Initialize Global Variables *1
C{ Global Variables : Old, First_Item, TopList *I
Ct Process : Prior to the first use of either a menu or a
(C list, the pointers must be initialized. 4}

procedure init menu;
A. ? access old,firstitem,top_list;

begin
old:=B; first item:=nil; toplist:=nil;

end;

begin
CSNULLBODY)
end.

a, .*

.1'.

E-40

I t. I,"6 . ' .'%' S,% ,'j , , ,'. IN- . . - .

Help Nodule

(SWIDELIST)

{* Help Module Provides information to the user about the *
L* system. The help messages are stored in the Help File, and*)
{* are indexed. Each query or menu item has been assigned a *)
(* help index, which is used to look up the associated help *}
{* information.

program helper;
const max_help = 30; f Maximum length of a help message line)

max-lines = 19; { Maximum number of help message lines }
helps = I; C Help file is file number one I

type helpmsg = record
helpindex : integer;
line : packed array[l..max help] of char;

end;
whichfile = 1..10;

boxes = (q, m, h);

C See the TermIO Module for details on the following
(Screen I/0 Declarations)
procedure gotoxy(x,y : integer); external;
procedure clear line(box : boxes; y : integer); external;

{7 (See the LinkFile Module for details on the following I
(File Access Declarations
procedure readf(file num : whichfile; var buffer : helpmsg;

var eolf : boolean); external;
procedure resetf(file-num : whichfile); external;

C* Procedure : Help *}
Li Parameters : HelpjIndex *}
C' Entry Conditions : Help_Index identifies which help message*)
C* to look up. *I
C' Process : The Help File is scanned until a matching index *0
C' is found. This line and all subsequent lines are displayed*)
•{ in the help-box area of the screen, until a line with a *)
C' different index is found. *}

-o procedure help(help_index :integer);
vat x,y :integer;

I mess :help_msg;

: .eclf :boolean;

I : 2..max-lines;
begin

resetf(helps);
[Find the first line of the help message, if there is one.)
repeat

readf(helps,mess,eolf);
until (mess.help_index=helpindex) or eolf;

E-41

-" """ " -.

Help Nodule

t Display all lines with matching index numbers }
while not eolf and mess.helpindex=helpjinde- do

begin
clear_line(h,l);

.. : write~mess, line) ; l:=l+1;

readf(helps,sess,eolf);
end;

end;

begin
{NULLBODY)
end.

E-42

|-**

Users Module

($WIDELIST)

{* Users Module - Maintains the List of Users for the Command *3
4Y ,* Processor ,3

program user file;
const max str = 30; (Maximum length of a string 3

user-file = 3;
type

< .char-string = packed arrayl1..maxstr) of char;
whichfile = 1..10;

links = record
next, prey : integer;

end;

List of Users File Type Definitions 2
C All the information maintained about a user }

userentry = record
link : links;
name : char string;
id : integer;

password : char-string;
end;

C Global Variable initialized by ReadArgs routine. See
the Argument Module for details. I

common nextuser : integer;

C File Access Declarations }
C See the File Access Module for details on the following I
procedure readf(file num : whichfile; var buffer : userentry;

var eolf : boolean); external;
procedure insertf(file num : whichfile ; var rec num : integer;

var buffer : userentry); external;
procedure resetf(file num : whichfile); external;
function roomf(file nun : whichfile) : integer; external;

C* Function : Lookup
{* Parameters : User Name, Password, ID *}
C' Entry Conditions : User-Name contains the name of the user *1
C* as he typed it in. *1
(# Process : User Name is looked up in the User-File *3
C* Exit Conditions : If the name is found, then Password and *
.* ID are set to the matching entries in the file, and the '

(* function returns a TRUE value. If the name isn't in the *}
{* list, the function returns a FALSE value. *}

function lookup(user name : char-string;
var password : charstring;

v's -var id : integer) : boolean;
var user-info : user-entry; C File entry for comparison I

E-43

,4/ . .' ,.t........'.* .,.-.-... .. . ,....

:' Users Nodule

4 eolf: boolean; t End of List of Users I
begin

lookup:=false; { Haven't found him yet I
resetf(user file);
repeat

readf(userfile,userinfo,eolf);
if user info.name=user-name

then begin { This user IS present in the file }
password:=user7info.password;
id:=user-info. id;
lookup:=true (We found him 1

end;
until eolf or userinfo.name=username;

end;

(* Function : NewUserOK
{* Entry Conditions : An Inquiry is being made to see if there*)
{* is room in the List of Users for another entry. *1
(* Process : The RoomF function is called to see if there is *}
{* any space available. *}
{* Exit Conditions : If there is at least one entry available,*)
(* then the function will return a TRUE value. Otherwise, the*)
{* result will be FALSE. *1

function newuserok : boolean;
begin

if roomf(user file)>@
then newuserok:=true
else newuserok:=false;

end;

(# Function : Add User *}
{* Parameters : Name, Password *2
* Global Variables : Next User
{* Result : User ID
(* Entry Conditions : Name and Password are to be added to the*)
(* List of Users. *}
{* Process : The Next User id will be assigned to this Name *}
{* Password pair and will be inserted into the List oz Users. *1
(* Next User will be incremented. *1
{* Exit Conditions : The function result will be the id 'I
C* assigned to the user. *}

function add-user(name,password : charstring) : integer;
access nextuser;
var user info : user entry; t File entry buffer }

r : integer; { The physical record number of
the neo entry - not used here }

begin { add user I
*,' ,v. resetf(user file);

, Set up the Buffer I

E-44

. --7

Users Hadule

user inf o.naue:cname;
user info. password: =password;

Ir Use the NextUser id and update it3
user info. id:=next-user; next user:=next user+1;
adduu3r:=user i nfo.id;
inserti (user file,r,user info);

* end, "L add user

* begin
M ULL BODY)
end.

.E-4

Projects Nodule

($WIDELIST)
***,**}

(' Projects Module - Maintains the List of Projects for the *1
(a{* Command Processor *)

program proj_list;

const max str = 30; { Maximum length of a string }
max item = 28; (Maximum length of a menu item I
{ See File Access Module for description of Files Array }
projects = 4; C Slot number in Files Array for Projects)

g_dir = 7; C Slot number of Global Directory I

type char string = packed array[l..max strJ of char;
menu string = packed array[l..max item] of char;

whichfile = I..1 ;4 links = record
next, prey : integer;

V end;
byte = 8-255;

{ List of Projects Type Definitions I
state = (select-board, selectcomponent, sel_done,

connections, connjdone, placement, placedone,
routing, route_done);

Pie proj entry = packed record
link : links;
id : integer; (Project ID number)

.- name : charstring; (Project Name)
desc : charstring; (Project Description I

completion : state; (State of Completion I

user : integer; C Owner ID number I
end;

C Global Variable - Initialized by Read_Args routine in
Argument Module I

common nextproj : integer; C Next project id to be assigned. I

C File Access Declarations I
{ See File Access Module for details on the following I

. procedure readf(file num : whichfile; var buffer : projentry;
• "var eolf : boolean); external;

procedure writef(file num : whichfile; var buffer : projentry;

var writeok : boolean); external;
procedure insertf(file num : whichfile; var recnum : integer;

var buffer : projentry); external;
procedure deletef(file num : whichfile); external;
procedure reseti(file num : whichfile); external;
function roomf(file num : whichfile) : integer: external;

C List building declarations }
C See Menu Module for details on the following
procedure initlist; external;
procedure build-list(item-text:menu string:item-code:integer);

E-46

Projects Module

external;

function select-list : integer; external;

{ Returns number of Files Per Project - See Global Directory
function fpp : integer; external;

{* Function : NewProjOK - Is there room for another project? *1
{* Exit Conditions : If there is room in both the Global
{* Directory and the List of Projects, then NewProjOK will be *)
{* TRUE. Otherwise, FALSE will be returned.

function newprcjok : boolean;
begin

if roomf(projects)>=1 and roomf(gdir)>=fpp
then newprojok:=true
else newprojok:=false;

end;

-* Procedure : UpdateProjList - Update List of Projects *1
{* Parameters : ID, Completion *1
Cs Entry Conditions : ID identifies the project in the List *}
{* of Projects to be updated, and Completion is the new value *}
.{ for the state of the project.
{* Process : The List of Projects will be scanned for project *
Ci ID. If found, its state of completion will be updated to I}

C* Completion. Nothing is dona if ID is not found. *}

procedure updateprojlist(id : integer; completion : state);
var updated, eolf, writeok : boolean;

projdata : projentry;
begin

resetf(projects); updated:=false;
repeat

readf(projects,projdata,eolf);
if (proj data.id=id)

then begin (We found it! }
projdata.completion:=completion:
writef(projects,projdata,writeok);
updated:=true;

end;
until eolf or updated;

end;

C, Function : Select Project 5)

,, Parameters : User 5)

1 6* Result : One of the user's project IDs 4)

Ci Entry Conditions : User identifies whose projects to look *)
, .?"* C. up in the List of Projects. *}

*,.% .'** {* Process : All of User s projects are looked up in the List *)

E-47

It J4 Zi!.

I5 -

Projects Nodule

(* of Projects and the following information is inserted into *1
(* a list - project Name and ID number. The Names will be *}
(* displayed in a menu and the user will be asked to select *1
-, one. *1
(4 Exit Conditions : The ID number corresponding to the user's*)
{* selection will be the function result. If the User has no 0}
"4 projects in the List of Projects, then a value of Zero will*)
{* be returned. *}

function selectproject(user : integer) : integer;
*'. var item text : menu string;

c : I. .max item;
proj_data : projentry;

gotone, eolf : boolean;
begin

gotone:=false;
resetf(projects); init_list;
repeat

readf(projects,projdata,eolf);

if (projdata.user=user) and not eolf
then begin

4%? gotone:=true;
for c:=l to max item do

item text[c]:=proj data.namecl;
build list(item-text,proj data.id);

end;
until eolf;
if gotone
then selectproject:=select list
else select project:=e;

end;

{* Procedure : New Project - Add a new project to the List *1
(4 Parameters : Name, Desc, User, ID *1
(4 Entry Conditions : Name, Desc(ription), and User define the*}
C* new project to be added to the List of Projects.
(* Exit Conditions : ID is the Project ID assigned to the *}
{4 project.

procedure newproject(var name, desc : char-string;
user : integer; var id : integer);

access next proj; I Global Variable - Initialized by
Read-Header routine in Argument Module }

var projdata : projentry;
r : integer;

begin

resetf (projects);
C Load the Buffer I
projdata.name:=name;
projjdata.desc%=desc;

proj data.user:=user;

E-48

%' 40

'6>* -1J.,-~. -

."-....jProjects Module

~proj data.completion:=select-board;.
Use the next sequential ID and update it 1

% proi-data.id:=next-proj; next proj:=next proj+1:
. { Return the new ID the the Caller}

-. - -id:=proj'data.id;

"" ' inserti(projects,r,proj data);

. " end; { new project}

- ', r -Procedure : Free_Project - Remove a project from the List *

--.'.. {*Parameters :ProjectID *
.. {* Entry Conditions : Project_ID identifies the project to be *

removed from the List of Projects.
Process : List of Projects will be scanned for Project_ID.

; {*If it is found, it will be deleted. Nothing happens if the*31
project isn't in the list. at

4."-... procedure free_project(project_id jinteger);

, . var eolf : boolean;
proj_data : proj_entry;

- % begin
if projectidO

"%"" then begin
insertfresetf(projects);

:* -'! (repeat
reado(proectsproj_dataeolf);

{Poer : if proj_data.idproject_id
Pr e then deletef(projects);

until eolf or (proj_data.id=project_id);

end;
end;

{ Function : GetState - What is the state of the Project?

{*Parameters : 1D *
{* Result : The current State of Completion of the project *1
SEntry Conditions : ID identifies which project t look up *

function get_state(idprojntid : intee;
var eolf : boolean;

projdata : projentry;
' begin

resetf(projects);

repeat

readf(projects,projtodata,eolf);
ii (projdata.id=id)
then get_state:projrdata.completion:

until eolf or (pro data.id=id);
nedd;

" Procedure G SetSName - What is the name of the project? 0

E-49

CPats I1

Projects Module
-. (" {* Parameters : ID, Name *1

{* Entry Conditions : ID identifies the project to look up *1

(; Exit Conditions Name will contain the name of the project*'
-'N*(~ if ID exists. If ID isn't in the List of Projects, name '1

w will be set to all spaces.

procedure getname(id : integer; var name : charstring);
var eolf : boolean;

%... proj data % proj entry;
begin

name:=
resetf (projects);
repeat

readf (projects,projdata,eolf);
if (projdata.id=id) and not eolf
then name:=projdata.name;

until eolf or (projdata.id=id);

end;

begin
(S{NULLBODY}
end.

'N

-E-5
.....

A,. Argument Module

{$WIDELIST}

{* Argument Module Responsible for passing arguments between*}
"" the Command Processor and the other layout modules.

program args;
const args 5;
t gdir = 7;
type

"" wf = I..10;

C Argument File Definitions }
state = (select board, selectcomponent, seldone,

connections, conndone, placement, placedone,
routing, routedone);

modules = (cp, selecter, connecter, placer, router, os);
- ArgHeader contains information the CP needs to know. I

arg_header = record
project id, f Current Project I
userid, t Current User I
error-code : integer;C Current Error I
completion : state; C State of Completion }
module : modules; (Last module executed }

end;
SSaved -State keeps track of the next IDs to assign }
saved state = record

nextid,
next-user,
nextproj : integer;
proj_info : argheader;

I. end;

filespec = arrayll..12] of char;
drive id = @..I;

links = record
next, prey : integer;

end;
where : record

file name : filespec;
linked : boolean;
drive : driveid;
diskid,
recs-avail,
rec len,

1,1 first,

;ree : integer;
end;

argentry : record
link : links;
case boolean of
false:(header : saved state);
true:(file entry : record

file-num : wf;

E-51

h.e

Argument Nodule

fileloc : where;
end);

end;

C Global Variables s

common nextproj, next_user, nextid : integer;

' See the LinkFile Module for details on the following }
* .procedure readf(f : wf; var buffer:argentry; var eolf:boolean);

external;
procedure writef(f : wf; var buffer:argentry;

var writeok:boolean); external;
procedure resetf(f wf); external;
procedure insertf(f wf; var rec-num : integer;

var buffer : argentry); external;
procedure deletef(f : wf); external;

C See the Global Directory Module for details on the following }
procedure updatefile(module : modules; project : integer;

filenum : wf; file_lec : where); external;
function get_loc(module : modules; project integer;

var file-num : wf; var file lec : where) : boolean; external;

CE Procedure z ReadArgs - Read in arguments passed *}
C* Parameters a Info *1

C* Entry Conditions : The Argument File contains the current *1
{* ' ('state of the system. *1
C* Process : The current state is sent back to the Command *1
t* Processor in Info. If the last module executed updated *

C* any files, then the Global Directory has to be updated. *}

procedure read args(var info : arg_header);
access next proj, nextuser, nextid;
var eolf : boolean;

buffer : argentry;
begin

resetf(args);
readf(args,buffer,eolf);
info:=buifer.header.projinfo;;
nextproj:=buffer.header.nextproj;
next user:=buffer.header.nextuser;

next id:=buffer.header.next id;
repeat C6 Read current state of files I

readf(args,buffer,eolf);
if not ealf
then begin

deletef(args);
with buffer.fileentry do

t Update the Global Directory to match I
.$ update file(info.module,info.projectjid,

4/. file-num,fileloc);

E E- 52

A, Nmw im ,iz a,

Argument Module

"'" end;

until eolf;
end;

{* Procedure : Update Header - Save current state *}
{* Parameters : Info *3
{* Entry Conditions : Info is the current state of the system *3
{* to be save in the Argument File. *}

procedure update header(info : argheader);
access next proj,next user,next id;
var eolf, writeok : boolean;

buffer :-argentry;
begin

resetf(args);
readf(args,buffer,eolf);
buffer.header.next-proj:=nextproi;
buffer.header.next user:=next user;
buffer.header.next id:=next_id;
buffer.header.projjinfo:=info;
writef(argsbuffer,writeok);

end;

{* Procedure : LoadArgs - Load Argument File with files *3
{* Parameters : Module, Project *3

(* Entry Conditions : Module and Project identify which files *3
{* are to be loaded. *}
{* Process : The Global Directory is scanned for files with *I
{* matching Module and Project parameters. When found, their *)
(* locations are inserted into the Argument File. *)

procedure load args(module : modules; project : integer);
var buffer argentry;

r : integer;
eclf : boolean;

Ibegin
R Reset the Directory and the Argument files, and skip the
Argument File Header record. 3

K., resetf(gdir); resetf(args); readf(args,buffer,eclf):
repeat (Scan the Global Directory I

with buffer.file entry do
eolf:=getloc(module,projectofilenu,file_oc):

if not eolf
then insertf(args,r,bvffer);

until eolf;
end;

begin

* ~ fNULLFODYA
B end.

E-Z3

fvb % • . - - . . o . o . . . , . , . , . ° o . " " .

V DiskList Module

%~ -($WIDELIST)

(* DiskList Module - Keeps track of allocated and available *1
Diskette soace. *1

C* A record is maintained for each diskette in the system. *}
{* Each diskette may be either assigned to a specific project,*)
{* or assigned to a user. If assigned to a user, then it is *)
{* avaialable for assignment to a project created by that user*)
{* only. *}

program disk-list;
const max-space = 133; C Maximum space available in Kbytes }

disks = 6;
type

wf = 1..10;
links = record

next, prey : integer;
end;

disk_assgn = record
link : links;

disk_id, { Which disk is it I
freespace : integer; { How much room is

available }
case assigned : boolean of

true : (projectid : integer);
false : (user-id : integer);

end;

C Global Variable initialized by Read_Args - See Argument
Module for details I

common next-id : integer;

(File Access Declarations s

(See the LinkFile Module for details on the following I
procedure readf(f : wf; var buffer : disk_assgn;

var eoll : boolean); external;
procedure writef(f : wf; var buffer : disk assgn;

var writeok : boolean); external;
procedure insertf(f : wf; var rec_num : integer;

var buffer : diskassgn); external;
procedure resetf(f : wf); external;

C See the DiskID Module for details on the following I
orocedure new:disk(disk id integer) ;external;

'I

{* Function : GetDiskID - Assign a project file to a disk *1
(* Parameters : User, Project, Size }
C. Result : DiskID assigned to file *2
(* Entry Conditions : User identifies the owner of the file, *

.. , {. Project identifies the project to which the file belongs, *
(* and Size is the number of KBvtes required by the file. *]

E-54

1''~~~ % % -p. -

a - - - a . jtL~ - a , a. - - - . a a . . - - a-- - - -a -

DiskList Nodule

(* Process : The Disks File is scanned for a diskette already *}
(4 assigned to Project with enough free space on it. If one *}
(* can't be found, then the file is scanned for a diskette *1
C{ belonging to User. If one is found, it is assigned to pro-*
(* ject. If the User has no free disks, then a new diskette *

a' (* will be added to the system and assigned to the project. *}

function getdiskid(user, project, size : integer) : integer;
access next id;
var done, eolf, writeok : boolean;

diskdata : disk assgn;
r : integer;

begin
resetf(disks); done:=false;
repeat
{ Look for a diskette already assigned to Project with

enough free space on it for the file }
readf(disks,disk data,eolf);

* if (disk data.assigned
and disk data.project_id=project
and disk data.free_space>=size)

then with disk-data do
begin

{ Found One! }
get diskjid:=disk_id;
free__space:=free space-si:e;
writef(disks,diskdata,writeok);
done:=true;

end;
until eolf or done;
if not done
then begin

resetf(disks);
a Next, look for a free disk assigned to User }
repeat

readf(disks,diskdata,eolf);

if (not diskdata.assigned and
disk data.user id=user)

then with diskdata do
begin
C Assign it to Project I

get diskjid:=disk_id;
freespace:=maxspace-size;
assigned:=true;
project_id:=project;
writef(disks,diskdata,writeok);
done:=true;

end;
until eolf or done;

X." end;
'3" if not done

then with disk-data do

E-55

:,.

DiskList Module

begin

Have to make a new diskette available I
disk id:=next_id; next id:=next_id+1;
get disk id:=disk_id;
assigned:=true;
project_id:=project;
insertf(disks,r,diskdata);
{ Label and identify the new diskette }
new disk(diskid);

end;
end;

(* Procedure : Free-Disk - Deallocate diskette space *1
S* Parameters : User, Project *}
SEntry Conditions : Project identifies the project which is *}

.4/ I* is no longer active, and User identifies who the released *1
(* space will be assigned to. *1

procedure free disk(user,project : integer);
var eol, writeok : boolean;

Ks% disk data : disk assgn;
begin

resetf(disks);
repeat

treadf(disks,diskdata,eolf);
if diskjdata.assigned and

: -, disk_data.project_id=project
then begin

disk data.assigned:=false;
disk -data.user -id:=user;
disk data.free-space:=max_space;

-. endwritef(disks,diskdata,writeok);
end;

until eolf;
end;

begin
.$NULLBODY I
end.

.

E-56

e e -11

•: .5%
5

. C a-.:~t.
5,". " "' v -. , " ", .. t " * *. . . , .;~ . .;-.....'.' S ..,. ... ' ... av..." -'-s" -.-. . --..

Global Directory Module - Maintains the directory of all

1* files that the system has knowledge of. *

program global_directory;

const g_dir = 7;
dump = 8; l Temporary slot used for files

type
whichfile = 1..10;
links = record

next, prey : integer;
end;

{ Global Directory Type Definitions }
{ Which Module(s) can access the file? }
modules = (cp,selecter,connecter,placer,router,os);
C System Dependent File Specification 1
filespec = packed array[1..123 of char;
f System Dependent Drive Identification }
driveid = 0-.;
t Where is the file located ?}

where = record
file name : filespec; (Name of the File }
linked : boolean;
drive : drive id; { Drive in which to

Mount Diskette I
disk_id, (Which diskette the file is on I
rec_len, C The record length (power of two)l

recs avail, (Number of unused records in file)
first, C Physical record number of first

logical record)
free : integer; (Physical record number of

free space list }
end;

gdentry record
link : links;
module-id : packed array[modules] of boolean;

{ True value means the module has
access to the file }

file-num : whichfile; (Files Array Index }
projectid, { Project to which file belongs. A

value of Zero indicates a file
that is used for all projects }

how many integer; C How Many records have
been allocated }

filelotc where;
end;

{ See the File Access Module for details on the following }
procedure statef(filejnum:whichfile; var first,free integer);

e:xternal;
function roomf(file num : whichfile) : integer;

E-57

Global Directory Module

external;
procedure resetf(file-num : whichfile);

external;
procedure initf(file-num : whichfile; file_loc : where);

external;
procedure closef(file num : whichfile);

external;
procedure close-all(drive : drivejid);

external;
procedure readf(file num : whichfile; var buffer : gdentry;

var eolf : boolean);
external;

procedure writef(file num : whichfile; var buffer : gd_entry;
var writeok : boolean);

external;
procedure insertf(file num : whichfile; var recnum : integer;

var buffer : gdentry):
external;

procedure deletef(file-num : whichfile);
external;

.i *procedure createf(file-num : whichfile; howmany :integer);
external;

procedure erasef(file num : whichfile);
external;

procedure run file(file name : filespec; drive : drive_id;
diskid : integer);

external;
procedure initfiles;

external;

{ See the Menu Module for details on the following }
procedure init_menu;

external;

C See the Disk List Module for details on the following I
*" function getdisk_id(user, project, space : integer):integer;
eexternal;

Ci Procedure • New files *1
C* Parameters : User, Project
{* Entry Conditions : User and Project identify a new project *3
{* that the user is creating. J
Ci Process : The Global DirEctory is scanned for Template
C* Entries. A Template Entry is identified by a value of Zero*'
(4 in the DiskID field. For each Template Entry found, a new*}
C* file is created and an entry is made in the Global

D* Directory.
C****i******************** i**************************

procedure new.files(user, project : integer);
var newgde : gdentry; C Buffer for New Entries }
r, maxsize : integer; R R is the physical record number of

E-58

.CC

-'.A Global Directory Module

newly inserted entries - not used
here. Maxsize is the number of
Kbytes required by the file. }

eolf : boolean; { End of Directory indicator I
begin

resetf(gdir);
repeat

readf(gdir,newgde,eolf);
if new gde.fileloc.disk id=@
then begin (Located a Template File }

with newgde.filejloc do
begin

maxsize:=
((recjlen * new gde.howmany) div 124) + 1;

{ Allocate Diskette space for the file }
disk id:=getdiskid(user,projectmaxsie);

end;
{ Assign the file to the Project }
newgde.project_id:=project;
C Create the new file)

* initf(dump,newgde.file_loc);
createf(dump,newgde.howmany);
closef(dump);
t Add it to the Directory }

An ,insertf(gdir,r,newgde);
-end;

until eolf;
end;

.. Function : FPP - Files Per Project *}
(* Result : The number of files created for every project *}

function fpp : integer;
begin

fpp:=2 { Value depends on current system configuration }
end;

{* Procedure : Kill GDE
{, Parameters ProjectID *}
{* Entry Conditions : Project_ID identifies the project whose *}
{* files are to be removed from the Directory. *}
C* Process : The Directory is scanned looking for Entries with*I
{* a Project ID that matches the parameter. When found, those *J
(# Directory Entries are deleted and the corresponding file is*.
{* Purged from the system. *3

procedure kill-gde(project_id : integer);
var gde : gdentry; (Directory Entry Buffer]

"' eolf : boolean; [End of Directory flag I
begin C kill I

E-59

6lobal Directory Module

ii project id<>S
then begin

resetf(gdir);
repeat

% readf(gdir,gde,eolf);
if gde.project_id=project id
then begin (Found one'

deletef(gdir);
initfidump,gde.file_loc);
erasef(dump);

end;
until eolf;

end;
end; (kill }

{* Procedure : UpdateGD Update Global Directory
{* Process : Before the Command Processor Finishes execution, *I
{* the new status of all of the files must be recorded in the *3
{* Directory to keep it current. As records are added to or *3
(* deleted from the Command Processor Files, the First, Free, *1
(* and RecsAvail parameters are subject to ch2nqe. *}

procedure updategd; { Must be called before CP terminates!!!I
var eolf, writeok : boolean;

gde : gd entry;
first, free, recs-avail : integer; f Parameters to be updated I

begin
resetf(gdir);
repeat

readf(gdir,gde,eolf);
if not eolf and gde.moduleid[cpl

then begin
{ Get the current state of the file I
statef(gde.file num,first,free);
gde.file loc.first:=first;
gde.fileIoc.free:=free;
{ Set the number of available records I
gde.fileloc.recs_avail:=roomfi(gde.filenu);
writef(g dir,gde,writeok);

end;
4until eolf;

{ Make sure all the files get updated in the OS directcry}
close all(O);
close all(l);

end;

{* Procedure : UpdateFile - Update a file's GD Entry
(* Parameters : FileNum, Project, FileLoc *}
(a Entry Conditions : FileNum and Project identifies the file*'
{* whose Global Directory Entry must be updated.

E-6

Global Directory Module

(" Process : The file is located in the Directory and the
{* entry is updated with the information in File Loc.

procedure update file(module : modules; project integer;
file num : whichfile; file-loc : where);

var eolf, writeok : boolean;
gde : gdentry;

begin
resetf(g_dir); writeok:=false;
repeat

readf(g_dir,gde,eolf);
if ((gde.filenum=file num) and

(gde.projectid=project) and
(gde.moduleid~module]))

then begin (This is the Entry to be Updated }
gde.fileIoc:=fileIoc;
writef(g_dir,gde,writeok);

end;
until eolf or writeok;

end;

{* Function : Get-Loc - Locate files for other Modules *
{* Parameters : Module, Project, FileNum, File-Loc *2
(* Result : EOLF condition *}
(a Entry Conditions : Module and Project identify which files *}
(* are to be looked for in the Directory. *}
(* Process : The Directory is scanned from the current *}
(* looking for files that belong to the Module and Project. *}
(* If one is found, its number and location are returned to *}
{(the caller. This function should be called repeatedly *}
(* until an End of File condition is signalled. *}
(a Exit Conditions : File_Num and File-Loc are returned, and a)
{a the function returns a FALSE value, if a file was located *2
{* that belonged to the module and project. If the End of *}
{* file is reached, then the function returns a TRUE value. *}

function get_loc(module : modules; project : integer;
var filenum : whichfile; var fileIoc : where) : boolean;

var eolf boolean;
gde : gdentry;

begin
repeat

readf(gdir,gde,eolf);
until eolf or ((gde.module idEmodule]) and

((gde.project_id=project) or (gde.projectid=@)));
* file num:=gde.filenum;

fileloc:=gde.file_loc;

get loc:=eolf;
C., end;

E-61

.4"

,ii

Global Directory Nodule
C* Procedure : Init All Initialize Everything!.

it Process : After some Miscellaneous initialization routines I)

.ai {* are called, the Global Directory is Initialized. Then all *
(* of the Command Processor Files are looked up in the
(* Directory, and they are initialized. No access may be made*)
. to a file until it is initialized! 0

procedure init all;
var file _ ic : where;

eolf : boolean;
gde : gd_entry;

begin
init files; (Set up the file array with all files closed)
init menu; (Set the menu pointers to nil)

- -- C The global directory must be initialized 1
with fileloc do
begin

C You have to know where to find the Directory I
disk id:=1;
file name:='GLOBAL/DIR:9';
drive:=@;
rec len:=64;
first:=I; (This should'nt change!!!)

end;
Linitf(g_dir,fileIoc);

C Free and RecsAvail parameters still not set
resetf(g_dir);
{ Look up Directory entry in the Directory to set them I
repeat

readf(gdir,gde,eolf);

until gde.file num=g_dir;
closef(gdir); initf(gdir,gde.file loc);
C Now the rest of the files can be located I
resetf(gdir);
repeat

4.' readf(gdir,gde,eoli);
if (not eolf and gde.filenum<>g_dir and

gde.module-id[cp] and gde.project_id=I)
then initf(gde.file_num,gde.filejloc);

until eolf;
end;

C* Procedure : Exec - Execute an Operating System Program *1
C* Parameters : Module *1
{* Entry Conditions : Module identifies the Program to be '1
C* executed. The Command Processor will no longer be in
C* control. '1

procedure exec(module : modules);\ _$var gde gd entry;

eolf : boolean;

E-62

A. --.

' Global Directory Module

* - begin
(To execute OS, all that is necessary is to return from

this procedure, after which the program will end! }
if uodule(>os
{ Otherwise, the proper module must be executed. I
then begin

resetf(g_dir);
repeat

readfCg_dir,gde,eolf);
if gde.eodulejidmodulel and gde.modulepidtos]
then with gde.file_loc do

run-file(file-name,drive,diskid);
until eolf;

end;
end; C If you get to here, then the OS will take control.

begin
(SNULLBODYI
end.

E-t ,N

a'e

N.

,.o

E-63

I S..

*%

T - f. r. r.- --7 . - - . - -;. .. .%0.. .-..-.-

Command Processor Module

{$WIDELIST}

{* Command Processor Module

({ The following files must exist on the master CP disk *)
e{ (Disk number 1): *}

(, { GLOBAL/DIR - describes the parameters of the rest *}
{* of the files 0
. MENUS/CP - Contains menus I and 2 *}
(a. { (See SelectOption and Get NextjModule *3
('.a { for menu contents) a)
.a HELP/CP - Contains all of the system Help a)
(* messages. *}
{* USERS/CP - A list of all Users and their ID's *}
{* PROJECT/CP - A list of all Projects and their ID's *}

{a DISK(S/CP -Contains Diskette space allocation *1
(a ARGS/CP - The argument file is the means of *}

communication between the system *}
(* modules. It also contains "Current *1
{* State" information that must be saved *

* (a between Command Processor sessions. *}
({ In particular, the Command Processor a}
({ Global Variables are initialized with *}
(a{* the following information: *)
(, project id - Number of Last project accessed U
(a user id - Identity of current user U
({ error code - Error conditions of other modules *)
.* completion - State of completion of project id 0

-*-: {* Exit Conditions : The Global Directory and Argument a)
(a Files are updated, and either the program is exited, or *
{(the next layout module is invoked. *

program commandprocessor;
const maxprompt = 38; (Maximum length of a prompt I

maxnum = I; (Maximum length of a number)
max-str = 38; f Maximum length of a string)

type
C Query Type Definitions 3

unit = (mils, inches, mm, scalar);
promptstring = packed arrayl..maxprompt] of char;

plen = 1..maxprompt;
position = l..maxstr;

stringcase = (upper, lower, none);
char-string = packed array[l..max str] of char;

yesno = (yes, no, i dunno);

boxes = (q, m, h);

Global Directory Type Definitions }
modules = (cp,selecter,connecter,placer,router,os,undeined);

A list of the possible values for the next module
to be executed

E-64

9' ""

%%

Comiand Processor Nodule

(List of Projects Type Definitions I
state = (select-board, selectcomponent, seldone,

connections, conndone, placement, place done,
routing, route done);
{ A list of the possible values for the state of
completion of a project I

{ Argument File Type Definitions }
C Arg_Header defines the information the CommandProcessor reads
from the ARGS/CP file to initialize the global variables.)
argheader = record

project_}d,

userid,
error-code : integer;
completion : state;
module : modules;

end;

var (Global Variables }
current : argheader;

valid : boolean; { Indicates the validity of a user }

{ Query Declarations)
%r See the Query Modules for an explanation of these routines }
procedure querynum(prompt : promptstring;

prompt_length : pjen;
min, max : integer;

var answer : integer;
units : unit;

help_index : integer); external;

procedure querystr(prompt : promptstring;
prompt length : p_len;

min, max : position;
var answer : char-string;

var stringlength : position;
make case : stringcase;

help_index : integer); external;
procedure queryyn(prompt : promptstring;

promptlength : p_len;

var answer : yesno;
help index : integer); external;

Screen I/0 Declarations }
C See the Terminal I/0 Module for an explanation of these
routines.)

procedure goto box(box : boxes; x,y : integer); external;
procedure clearjline(box : boxes; y : integer); external;
procedure clear-box(box : boxes); external;
function getcount(box : boxes) : integer; external;
procedure inputerror(errmsg : char string); external:

E-65

* . ' , % %**%*'.*< * **' '. . *. ..* ,.' . .,. - .- 7- , , 7. ' '.-..-.

9 ' T J%'V" " -... . ' ' - ' . '''3'T'& 't"'.% t ' 5r.:v cJ- ' KT7 -- ": ' " '''-r"r 'w" •u""'r ""I,

Command Processor Module

t See the Global Directory Module for an explanation of this
routine.)

procedure init all; external;

(* Procedure Name : Resolve *2
{* Parameters : Error Code *}

(4 Entry Conditions : ErrorCode identifies a particular error*)
(. condition that another module was unable to handle. *1
({ Exit Conditions : If possible, the error condition will be *
(* corrected and the error code will be reset to zero. *1
{* In the current implementation, this is a dummy routine, but*)
{*.~ (it is provided for future expansion. *2

-procedure resolve(var error-code : integer);
begin

write('***** ERROR ,errorcode:3,' *****')
S.-, error-code:=8

end;

(a Procedure : SetIdentity *1
(a Parameters : ID, Valid *2

.4 Entry Conditions : The identity of the user is unknown. *2
a (4 Exit Conditions : ID will identify the user if he exists. *

{* Valid is a flag that will indicate if the user exists. *]

procedure getidentity(var id:integer; var valid:boolean);
const nopassword = ' ;

var name, C The name of the user2
. password : char string; C His Password I

namelen : position; { The number of characters
in the user's name)

found : boolean; C A Flag indicating whether

or not the user already
Sexists)

answer : yesno; { Will indicate if the user
typed his name correctly 2

t See the Users Module for details on the next three routines i

function lookup(user_name : charstring;
var password : charstring;
var id : integer) : boolean; external;

function add-user(username,password:char-string):inteaer;
external;

function newuserok : boolean; external;

"tj (4 Procedure : Create User *1
C* Parameters Name *}

r (* Outer Level Variables : Password, ID, Valid *}
* Entry Conditions a Name was not found in the List of *2

E-66

"r" " .. "V -..-.. ". ..-- ..-

• #. Command Processor Module
rrrar {* Current Users., *

{Exit Conditions : If there is room for another user in the *0
{List of Current Users and the operator indicated a desire *1
{to become a user, then ID and Password will be updated and *}1
{Vaild will be set to true. Otherwise, Valid will be false.*)

procedure create-user(name : char_string);
var answer : yesno; (Will indicate whether or not

the operator wishes to become
a user}

C aProcedure : Get Password
{* Parameters : Password*
* Entry Conditions : A new user must be assigned a Password *1

Exit Conditions : If the user indicated that he didn't want*}
{* a password, then Password will be set to all spaces. *
SOtherwise, Password will be set to whatever character f e

{*string he entered. *

procedure get_password(var password : char_string);
var answer : yesno; (Will indicate whether or not

a password is desired
.len: position; The length of the password

. begin
query_yn('Do you want a Password? ,23,

answer,4);
if answer=yes then

querystr('What will your Password be P 27,
5,2a,password,len,none,5)

else password:=no_password;
end; a get_passwordi r

begin (create-user)
if newuserok There IS room for another one }
then begin

query_ynO'Do you wish to become a user? ',29,
answer,3);

if answer=yes
then begin p A New User!!)

e pget_password(passwrd);
id:=add user(namepassword);

valid:=true;
end

-.' else valid:=false;
"-": end
., ,' else input_error('No More Room for New Users!. ")

'.. end; C create-user }

. e Function : Verify_dentity

e wParameters (sPasswords

. . E-67

%', • • ° ." " ° o '.o% % '°-.°o " . -.' ".o."i o " ad use (name -. password) • . ", ".• ,. % "., . .. -

Command Processor flodule

{* Entry Conditions : The users name was located in the List *}
{* of Current Users, and Password contains the password that *}
{* the user originally specified.
.* Exit Conditions : If the comparison string entered by the IJ
-* user matches his original Password, or if the original is *}
(all spaces, then the function returns a True result.
(* Otherwise, a False value is returned. The user get three *}
{* tries to get the password right.

function verifyidentity(password : char string) : boolean;
var testword : char string; i The string to compare with

the original Password }
len : position; C The number of characters in

testword I
tries : 0-.3; t Counts the number of

' attempts to match I
valid : boolean; { Indicates result of com-

beginparison }
,.'.'.begin

if password=nopassword
then verify_identity:=true
else begin

tries:=@; valid:=false;
repeat

querystr('Prove It! ,9,
5,20,testwordlen,none,6);

if testword=password then valid:=true;
tries:=tries+1;

until valid or tries=3;
verifyidentity:=valid;

end

end; C verify_identity }

begin { get_identity }
repeat

querystr('Who Are You ,
2,20,name,name_len,upper,1);

found:=lookup(name,passward,id); answer:=yes;
if not found

then begin
clear line(q,-1);
write(name);
queryyn('Is your name correct? ,

answer,2)
*clear line(q,-1);

end;
until answer=yes;
if not found

then create user(name)
else valid:=verifvidentity(password);

., end; C get_identity }

E-8

Command Processor Nodule

{* Procedure : SelectOption
(* Parameters : UserID, Project ID, Completion, Next Module *}
"* Entry Conditions : User ID identifies the current user. *}
{* Exit Conditions : ProjectID, Completion, and Next-Module *}
f{ will have been updated to reflect the current status of the*)
.* project selected by the user. *

procedure selectoption(var userid : integer;
var project id : integer;
var completion : state;
var next module : modules);

var name : char string; { Will contain the name of the
current project I

selection : integer; t The Menu Selection Index

(See the Projects Module for details on the following procedure)
procedure updateprojlist(id : integer; completion : state);

external;
-- i

(See the Menu Module for details on the following function }
function menu(num : integer) : integer; external;

(4 Function : GetNextModule 4)

{* Parameters : Completion *1
(* Entry Conditions : The user has selected a project and
(4 desires to work on it. Completion identifies the current *}
{* state of the selected project.
({ Exit Conditions : The function result is the Next Step in *1
U* Layout Process that the user has selected. A given step 4)

{* may be repeated as often as desired, but may only be per- *1
{* formed if all of the previous steps have been completed. *}

function get next module(completion : state) : modules;
var selection : integer; f Will contain the selection

from Menu 2)
answer : yesno; f Will contain response to

query on repeating a step)
highest, next: modules; { Will identify the highest

allowable step and the
user's selection }

begin (getnext_module 1
case completion of

*i selectboard, selectcomponent : highest:=selecter;
sel-done, connections : highest:=connecter;
conn-done, placement : highest:=placer;

placedone, routing, route-done : highest:=router;
end;
repeet

eepeat

* *E-6;

N

"I

Command Processor Module

selection:=menu(2);
{ I : Selecter
2 Connecter
3 : Placer
4 : Router "

case selection of
I : next%=selecter;
2 : next:=connecter;
3 : next:=placer;
4 : next:=router;
end;
if next>highest
then inputerror('You Can''t do that yet! ');

until next<=highett;
if next<highest

then queryyn('You want to redo this step? ',27,
answer,16)

else answer:=yes;
until answer=yes;
getnext module:=next;

end; { get next-module I

{ See Projects Module for details on the following }
function selectproject(userid : integer) : integer;

external;
function get-state(id : integer) : state; external;
procedure get-name(id:integer;var name:char string);external;
function newprojok : boolean; external;
procedure new project(var name, desc : char-string;

user : integer; var id : integer);
external;

{ See Global Directory Module for details on the following)
procedure new files(user, project : integer); external;

{* Procedure : CreateProject *"
(* Parameters : User, ID, Name
(* Entry Conditions : The user has decided to create another *.
{* project. User is the identification number of the current *}
{* user to whom the new project will be assigned.
{* Exit Conditions : If there is room for another project, *}
{* then ID will contain the project identification number that*)
(* was assigned to it, and Name will contain the user assigned*}
{* name. If there is not room for another project to be 4-.

{* defined, then ID will be zero. *1

procedure createproject(user : inteqer; var id : integer;
var name : char-string);

var desc : char string; C User's description of project }
. , ans-len : position; I Number of characters in name -

begin

E-70

€, ;" '.; ,* ' ,-' ." -.'i." % .-'.. ...' -'= %'--4, r W, .. '.. -. ".-/ . .a',..: ."

q,-b 2U ,V-1.V .. '.'t % ' -%. ; 5 , . r °° c .. , r - - ° ,r . , w2 r ... ;- : " r , - r -..

%

Command Processor Module

P tif newprojok

then begin { There IS room for another project }
querystr('What do you want to call it? ',28,2,2a,

name,anslen,none,29);
querystr('Give a brief description : ,26,1,30,

desc,ans len,none,21);
(Add the project to List of Projects 1
newproject(name,desc,user,id);

(Allocate Diskette space for the project }
new files(user,id);

- I , end
A else begin

inputerror('No More Room for Projects! ";
id:=@;
end;

V end;

{ See the Global Directory Module for details on the following I
procedure killgde(project : integer); external;

{ See the Projects Module for details on the following I
procedure free-proj(projectid : integer); external;

N! { See the Disk List Module for details on the following I
* - procedure free disk(user, project : integer); external;

{* Procedure : KillProject *1
(a Parameters : User, Project *}
(a Entry Conditions : The user has decided to destroy the a)
(a currently selected project identified by Project. 4
(a Exit Conditions : The project will have been removed from *)
(* the List of Projects and the diskette space will have been *1
(a de-allocated. Also, Project will have been reset to zero *1
(a to indicate that there is no longer a current project. *}

, *aaaa*******aa~********aa**aa***a*****aa*****aaa*aaa**

procedure killproject(user:integer; var project:integer);
begin
(Remove the Project from the Directory }
kill gde(project);

(Remove the project from the List of Projects I
freeproject(project);
{ De-allocate the Diskette space }
freedisk(user,project);
. Reset to No Current Project }
project:=@;

end;
%I

4 begin (Select Option }
if projectid<>@

' then begin (There IS a currently selected project I
{ Make sure the List of Projects is Up to Date I

E-71

-% %

S ,- - . . ,. -. 7- 7

Command Processor Nodule

updateprojlist(projectid,completion);

getname(project_id,name);
end

else name:='No Current Project Selected. ;

next module:=undefined;
repeat

clear line(q,3); write('Current Project :',name);
selection:=enu(1);

-- { I : Continue Project
2 : Switch Projects
3 : Create New Project
4 : Discard Project
5 : Exit to Operating System }

case selection of
I : if projectid=@

then inputerror('No current project selected! 1)
else nextmodule:=getnext-module(completion);

2: begin
project-id:=selectproject(user-id);
if project id=@
then input-error('You have no Projects defined' ')
else begin

completion:=getstate(project_id);
getname(projectjid,name);

e end;~end;

3 : createproject(user-id, project id, name);
4 : begin

kill project(user id, projectid);
name:='No current project selected. ;

end;
5 : begin

next module:=os;
project_id:=@;

-F W userid:=@;
end;

end;
until next module(>undefined;

end; t selectoption)

{. Procedure Execute Next *}
{* Parameters : Module, Project
(* Global Variables : Current
{* Entry Conditions : Module and Project will identify the *}
{* module which is to be executed next. *}
(* Exit Conditions : The selected module will be executed *}
(* after the Argument file is set up with the names of all *%
(* of the files required by the module. The Directory will *}
{* have been updated to reflect any changes in the status of *}
{* all the files used by the command processor.
* Note that control will NOT return to the caller' *

'Ur

Command Processor Nodule

procedure execute next(module : modules; project : integer);
C See the Global Directory Module for details on the following 3

procedure updategd; external;
procedure exec(module : modules); external;

{See the Argument Module for information on the following }
procedure update_header(info : argheader); external;
procedure loadargs(module : modules; project : integer);

external;

begin
updateheader(current);
loadargs(moduleproject);
updategd; { Update Global Directory and Close all files
exec(module); (No direct return from this procedure! I

end;

C See the Argument Module for details on the following I
procedure read args(var info : argheader); external;

VS

begin (command processor I
init-all;
read args(current);

~with current do
repeat

if error code<>I
then resolve(errorcode);

if user id=I and error code=@
then get_identity(user_id,valid)
else valid:=true;

if (valid and (error code=I))
then selectoption(user id, project_id, completion, module);

if error code=@
then execute next(module, project_id);

enduntil error-code=S
end.

SE-73

.,.

r - r- ." -. r,, ' C -. ---." . - "

APPENDIX F - Command Processor User's Manual

Start-up

The following discussion assumes that the computer is

on and that the Command Processor has been properly

installed. (See Appendix C for installation instructions.)

To initiate the program, insert the Command Processor disk

(it should be labeled as disk number one) into Drive A and

type -C. Next type 'CP' and press return. The Screen will

clear and the following will be displayed:

Who Are You ?
Response must be between 1 and 30 characters

In response to this question, you may enter whatever

character string you want to. Your answer will be used to

identify you in the future, so some form of your name seems

the most likely candidate. Once you successfully answer this

question, you will be asked some more questions with equally

obvious responses. Rather than trying to explain here what

your answers should be, I will explain how to get help and

how to edit your responses. This system has been designed to

not need a manual for operation, after all.

How to Get Help

Whenever you are asked a question, you have the

opportunity to get an explaination of how you should

respond. The question mark on the keyboard is reserved for

this purpose, and cannot be a part of any response. When you

type a '?', the corresponding help message will be

displayed. If the message is larger than the space available

on the screen, you will be prompted to press any key to see

F-i

'- the rest of the message.

If you press '?' while in the middle of an answer, then

when you have finished reading the help message your partial

answer will be erased. Don't forget and try to use a '?' as

part of any answer!

In addition to help for questions, there is also help

available for each menu option. When a menu is displayed on

the screen, pressing '2' will retrieve the help message for

, the item indicated by the current position of the cursor

(see below for instructions on moving the cursor). Before

you select an item for the first time, you should ask for

help so that the implications of that particular selection

may be explained to you.

Editing Your Responses

There are three different kinds of queries to which you

may be asked to respond, and each has unique editing

features available. The three types are string queries,

.V number queries, and yes/no queries.

%011

a-F-

F-2

-o • oL' • iL' • L9' hA
2

o \''*' a, * '. . . .* .- ° ~ ..

String Queries

As you may expect, the response to a string query is an

ASCII character string. Any printable character EXCEPT '?'

is allowed in the string. The general format of a string

query is as follows:

Question being asked ?

Response must be between min and max characters

Min and max are numbers which indicate the allowed

length of the response. The number of underlines will be the

same as max.

Answer the question by typing an appropriate response.

You may move the cursor back and forth with the left and

right arrows. Backspacing over what you have already typed

will not erase it, so you may correct a mistake at the

beginning of a line without retyping the whole thing.

If you want to insert a character or characters in the

middle of something you have already typed, move the cursor

to where you want some space opened up, then type -S

(inSert) for each character to be inserted. Each character

from the one under the cursor to the end of the string will

be moved to the right every time -S is typed. The cursor

position will not change. If what you have typed is already

the maximum length, the last character will be lost with

pevery insertion.

Deleting characters is also simple - position the

cursor on the character to be deleted and type -D (Delete).

All the characters to the right of the cursor will move left

to fill in the space left by the deleted character. Deletion

F-3

also does not alter the cursor position.

When you are satisfied with your answer, press RETURN

to terminate entry. If you have entered less than the

minimum number of characters, the RETURN will be ignored.

The cursor position at the time you press RETURN has no

effect on the answer - all the characters you see on the

screen will be in it, so be careful.

Number Queries

A number query can be recognized by the following

format:

Question Being Asked ? units
Range: min to max

i8. Units will be one of mils, inches, mm, or blank. If

blank, then the number is dimensionless. Min and max will

be in terms of the displayed units.

The only characters recognized are the digits 0 through

9, the comma, the period, the plus sign, and the minus sign.

Any other character typed will be ignored. The left and

right arrows are also recognized as with the string query.

.Insertion and deletion are the same as for the string query,

but only one period (decimal point) is allowed.
An additional feature of the number query is the

ability to change units. Pressing -U (Units) will cycle the

units displayed, and also change the values of min and max

appropriately. Every time -U is pressed, the units will

change in the following sequence: mils to inches to mm back

. to mils. If no units are displayed, pressing -U will do

nothing.

F-4

Pressing either plus or minus will change the sign of

the number as indicated by the leftmost character, but the

cursor will not move. Commas may be placed wherever desired,

but they have no effect on the value. As indicated above,

any decimal point after the first will be ignored.

Termination of a number entry is indicated by pressing

RETURN. If the value does not fall within the specified

range, you will be notified and asked to try again. As with

the string query, the position of the cursor when RETURN is

pressed does not matter. RETURN by itself will result in a

zero value.

Yes/No Queries

A Yes or No query can be recognized by the format:

Question Being Asked ?
Please Respond with Yes or No.

Pressing the 'Y' key (either upper or lower-case) will

spell out the word "Yes" and the 'N' key will spell out

"No". Any other key will spell out "I Don't Know!". When the

proper response is displayed, pressing RETURN will enter

your answer. No editing is necessary, and you may change

your mind as often as you like before you press RETURN.

-F-5

-'-'..

.,,< Menu Item Selection

When a menu is displayed on the screen, you are

supposed to select one of the items. A menu looks like this:

* Item One
Item Two
Item Three

Last Item

The asterisk is the cursor which indicates the current

item. Pressing the up and down arrows will move the cursor

up and down as desired. To select an item, position the

cursor beside it and press RETURN. If you're not sure what

will happen with a particular item, position the cursor next

to it and press '?' as discussed above. This will tell you

all you need to know about the item in question.

IFloppy Disk Handling

Because the system keeps track of all disks with an

index number, it is important to properly label a diskette

when instructed to do so. It is also important to not change

disks unless specifically asked. Following these rules will

insure that your files don't get corrupted.

Once a diskette is assigned to you, it will never be

made available to anyone else, even if you delete the

project on it. This allows you to keep your own disks

physically separate from everyone else's if you wish.

Before you create a new project, be sure you have some

blank FORMATTED disks available. The disk doesn't have to be

entirely blank, but it must have enough room for all the

project files. Just to play it safe, you should dedicate

F-6

!Av % I

I'

"... " empty disks to each project.

J'

F-7

Al Nei

." . - VITA

Ernest William Krausman was born on 17 October 1958 at

Wheelus AFB, Libya. He graduated from high scrool in Daytona

Beach, Florida in 1975 and attended the Georgia Institute of

Technology from which he recieved the degree of Bachelor of

Electrical Engineering in June 1979. Upon graduation, he

recieved a commision in the USAF through the ROTC program,

and entered active duty in August 1979 at Wright Patterson

AFB as a foreign telecommunications systems analyst for the

Foreign Technology Division, where he stayed until entering

the School of Engineering, Air Force Institute of

Technology, in June 1982.

APermanent address: 799 Marvin Road

Ormond Beach, Florida 32074

ime..

a.'-

SECURITY CLASI FICA ION OF THIS PAGE

AREPORT DOCUMENTATION PAGE
'.-.REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2&. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/EE/83D-35

&. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7g. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/EN
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

WPAFB, OH 45433
NAME OF FUNDING/SPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

i1. TITLE (Include Security Clasgfication)

Printed Circuit Board Layout by Micro !omputer
. PERSONAL AUTHORIS)

rausman, Ernest William
13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo.. Day) iS. PAGE COUNT

MR Thesis FROM TO _ 83 December 272
16. SUPPLEMENTARY NOTATION ' .od I p*(Ic t. TAW AM)WIe

V~.L)I~ De~r F' nd Prt!fuIcrtai t1voyI Wg

17. COSATI CODES IS. SUBJECT TERMS (Continue on reverse if necea 9ga i

PIELO GROUP SUB. GR. printed circuit board routing, computer aided

design, interactive graphics
19. ABSTRACT (Continue on reverse it necesary and identify by block number)

TITLE: Printed Circuit Board Layout by MicroComputer
ADVISOR: Lt. Col. Hal Carter

.DISTRISUTIONIAVAILASILITY OF ABSTRACT 2f. ABSTRACT SECURITY CLASSIFICATION

AiJCLASSIFIEUNLIMITEO 0 SAME AS RPT. C] OTIC USERS IFEy UNC LASS IFI ED

22g. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 2. OFFICE SYMBOL

I f(Include Area Code)

00 FORM 1473,83 APR EDITION OF JAN =73 IS OBSOLETE.

SSCU Nh* jjR H4 PA0E

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Printed circuit board artwork is usually prepared manually because of the

unavailability of Computer Aided Design tools. This thesis presents the
Fdesign of a microcomputer based printed circuit board layout system that is
easy to use and cheap. Automatic routing and component placement routines
will significantly speed up the process.
The design satisfies the following requirements: Microcomputer
implementation, portable, algorithm independent, interactive, and user
friendly. When fully implemented, a user will be able to select components
and a board outline from an automated catalog, enter a schematic diagram,
position the components on the board, and completely route the board from a
single graphics terminal.
Currently, the user interface and the outer level command processer have
been implemented in Pascal. Future versions will be written in C for better
portability.

,. . . ., .". "" " "" " . ."". " " . . , " •• . •"k . , - " .SECURITY ¢TAIAON OF TnS A e....-.- '-' 2, " HIS . '.

uJIq~
4'

